Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes

This article redefines the self-exciting threshold integer-valued autoregressive (SETINAR(2,1)) processes under a weaker condition that the second moment is finite, and studies the quasi-likelihood inference for the new model. The ergodicity of the new processes is discussed. Quasi-likelihood estimators for the model parameters and the asymptotic properties are obtained. Confidence regions of the parameters based on the quasi-likelihood method are given. A simulation study is conducted for the evaluation of the proposed approach and an application to a real data example is provided.

[1]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[2]  Fukang Zhu,et al.  Inference for INAR(p) processes with signed generalized power series thinning operator , 2010 .

[3]  H. Tong,et al.  Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .

[4]  R. Tweedie Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space , 1975 .

[5]  Somnath Datta,et al.  Inference for pth‐order random coefficient integer‐valued autoregressive processes , 2006 .

[6]  Yousung Park,et al.  A non-stationary integer-valued autoregressive model , 2008 .

[7]  Christian H. Weiß,et al.  Thinning-based models in the analysis of integer-valued time series: a review , 2015 .

[8]  Magda Monteiro,et al.  Integer-Valued Self-Exciting Threshold Autoregressive Processes , 2012 .

[9]  Krzysztof Szajowski,et al.  Stochastic Models, Statistics and Their Applications : Wrocław, Poland, February 2015 ; [papers collected on the occasion of the 12th Workshop on Stochastic Models, Statistics and Their Applications] , 2015 .

[10]  Shiqing Ling,et al.  Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models , 2007 .

[11]  T. Severini,et al.  Quasi-Likelihood Estimation in Semiparametric Models , 1994 .

[12]  H. Tong On a threshold model , 1978 .

[13]  S. Lahiri,et al.  1 - Bootstrap Methods for Time Series , 2012 .

[14]  Rajae Azrak,et al.  The exact quasi-likelihood of time dependent ARMA models , 1998 .

[15]  I. V. Basawa,et al.  First-order observation-driven integer-valued autoregressive processes , 2008 .

[16]  Brajendra C. Sutradhar,et al.  On Marginal Quasi-Likelihood Inference in Generalized Linear Mixed Models , 2001 .

[17]  Guy Mélard,et al.  Asymptotic Properties of Quasi-Maximum Likelihood Estimators for ARMA Models with Time-Dependent Coefficients , 2006 .

[18]  Dehui Wang,et al.  First-order mixed integer-valued autoregressive processes with zero-inflated generalized power series innovations , 2015 .

[19]  E. Ruiz Quasi-maximum likelihood estimation of stochastic volatility models , 1994 .

[20]  Wai Keung Li,et al.  Self-Excited Threshold Poisson Autoregression , 2013, 1307.4626.

[21]  Rainer Schwabe,et al.  Optimal design for quasi-likelihood estimation in Poisson regression with random coefficients , 2013 .

[22]  Li Yuan,et al.  THE INTEGER‐VALUED AUTOREGRESSIVE (INAR(p)) MODEL , 1991 .

[23]  Alexander Aue,et al.  QUASI-LIKELIHOOD ESTIMATION IN STATIONARY AND NONSTATIONARY AUTOREGRESSIVE MODELS WITH RANDOM COEFFICIENTS , 2011 .

[24]  Mohamed Alosh,et al.  Binomial autoregressive moving average models , 1991 .

[25]  Jye-Chyi Lu,et al.  Quasi-likelihood estimation for GLM with random scales , 2006 .

[26]  Konstantinos Fokianos,et al.  QUASI‐LIKELIHOOD INFERENCE FOR NEGATIVE BINOMIAL TIME SERIES MODELS , 2014 .

[27]  Hassan S. Bakouch,et al.  A new geometric first-order integer-valued autoregressive (NGINAR(1)) process , 2009 .

[28]  Mohamed Alosh,et al.  First‐Order Integer‐Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties , 1988 .

[29]  Christian H. Weiß,et al.  Thinning operations for modeling time series of counts—a survey , 2008 .

[30]  Kai Yang,et al.  An integer-valued threshold autoregressive process based on negative binomial thinning , 2018 .

[31]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[32]  Patrick Billingsley,et al.  Statistical inference for Markov processes , 1961 .

[33]  Mohamed Alosh,et al.  First order autoregressive time series with negative binomial and geometric marginals , 1992 .

[34]  Sin-Ho Jung Quasi-Likelihood for Median Regression Models , 1996 .

[35]  Somnath Datta,et al.  First-order random coefficient integer-valued autoregressive processes , 2007 .

[36]  Fw Fred Steutel,et al.  Discrete analogues of self-decomposability and stability , 1979 .

[37]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[38]  Howell Tong,et al.  Nested sub-sample search algorithm for estimation of threshold models , 2016 .

[39]  R. W. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .