Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes
暂无分享,去创建一个
Han Li | Kai Yang | Dehui Wang | Dehui Wang | Han Li | Kai Yang
[1] Mohamed Alosh,et al. FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .
[2] Fukang Zhu,et al. Inference for INAR(p) processes with signed generalized power series thinning operator , 2010 .
[3] H. Tong,et al. Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .
[4] R. Tweedie. Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space , 1975 .
[5] Somnath Datta,et al. Inference for pth‐order random coefficient integer‐valued autoregressive processes , 2006 .
[6] Yousung Park,et al. A non-stationary integer-valued autoregressive model , 2008 .
[7] Christian H. Weiß,et al. Thinning-based models in the analysis of integer-valued time series: a review , 2015 .
[8] Magda Monteiro,et al. Integer-Valued Self-Exciting Threshold Autoregressive Processes , 2012 .
[9] Krzysztof Szajowski,et al. Stochastic Models, Statistics and Their Applications : Wrocław, Poland, February 2015 ; [papers collected on the occasion of the 12th Workshop on Stochastic Models, Statistics and Their Applications] , 2015 .
[10] Shiqing Ling,et al. Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models , 2007 .
[11] T. Severini,et al. Quasi-Likelihood Estimation in Semiparametric Models , 1994 .
[12] H. Tong. On a threshold model , 1978 .
[13] S. Lahiri,et al. 1 - Bootstrap Methods for Time Series , 2012 .
[14] Rajae Azrak,et al. The exact quasi-likelihood of time dependent ARMA models , 1998 .
[15] I. V. Basawa,et al. First-order observation-driven integer-valued autoregressive processes , 2008 .
[16] Brajendra C. Sutradhar,et al. On Marginal Quasi-Likelihood Inference in Generalized Linear Mixed Models , 2001 .
[17] Guy Mélard,et al. Asymptotic Properties of Quasi-Maximum Likelihood Estimators for ARMA Models with Time-Dependent Coefficients , 2006 .
[18] Dehui Wang,et al. First-order mixed integer-valued autoregressive processes with zero-inflated generalized power series innovations , 2015 .
[19] E. Ruiz. Quasi-maximum likelihood estimation of stochastic volatility models , 1994 .
[20] Wai Keung Li,et al. Self-Excited Threshold Poisson Autoregression , 2013, 1307.4626.
[21] Rainer Schwabe,et al. Optimal design for quasi-likelihood estimation in Poisson regression with random coefficients , 2013 .
[22] Li Yuan,et al. THE INTEGER‐VALUED AUTOREGRESSIVE (INAR(p)) MODEL , 1991 .
[23] Alexander Aue,et al. QUASI-LIKELIHOOD ESTIMATION IN STATIONARY AND NONSTATIONARY AUTOREGRESSIVE MODELS WITH RANDOM COEFFICIENTS , 2011 .
[24] Mohamed Alosh,et al. Binomial autoregressive moving average models , 1991 .
[25] Jye-Chyi Lu,et al. Quasi-likelihood estimation for GLM with random scales , 2006 .
[26] Konstantinos Fokianos,et al. QUASI‐LIKELIHOOD INFERENCE FOR NEGATIVE BINOMIAL TIME SERIES MODELS , 2014 .
[27] Hassan S. Bakouch,et al. A new geometric first-order integer-valued autoregressive (NGINAR(1)) process , 2009 .
[28] Mohamed Alosh,et al. First‐Order Integer‐Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties , 1988 .
[29] Christian H. Weiß,et al. Thinning operations for modeling time series of counts—a survey , 2008 .
[30] Kai Yang,et al. An integer-valued threshold autoregressive process based on negative binomial thinning , 2018 .
[31] P. McCullagh,et al. Generalized Linear Models, 2nd Edn. , 1990 .
[32] Patrick Billingsley,et al. Statistical inference for Markov processes , 1961 .
[33] Mohamed Alosh,et al. First order autoregressive time series with negative binomial and geometric marginals , 1992 .
[34] Sin-Ho Jung. Quasi-Likelihood for Median Regression Models , 1996 .
[35] Somnath Datta,et al. First-order random coefficient integer-valued autoregressive processes , 2007 .
[36] Fw Fred Steutel,et al. Discrete analogues of self-decomposability and stability , 1979 .
[37] P. McCullagh,et al. Generalized Linear Models , 1992 .
[38] Howell Tong,et al. Nested sub-sample search algorithm for estimation of threshold models , 2016 .
[39] R. W. Wedderburn. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .