Effect of electrolyte strength on acid separation with NF membranes

[1]  Mika Mänttäri,et al.  Effect of salt mixture concentration on fractionation with NF membranes , 2006 .

[2]  Robert W. Field,et al.  Critical and sustainable fluxes: Theory, experiments and applications , 2006 .

[3]  M. Mänttäri,et al.  Nanofiltration of concentrated acidic copper sulphate solutions , 2006 .

[4]  Jaeweon Cho,et al.  Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): Characterizations, flux decline, and transport parameters , 2005 .

[5]  Béatrice Balannec,et al.  Comparative study of different nanofiltration and reverse osmosis membranes for dairy effluent treatment by dead-end filtration , 2005 .

[6]  Remko M. Boom,et al.  Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention , 2005 .

[7]  Andrea I. Schäfer,et al.  Nanofiltration: Principles and Applications , 2004 .

[8]  M. Nyström,et al.  Long-term acid resistance and selectivity of NF membranes in very acidic conditions , 2004 .

[9]  C. Vandecasteele,et al.  Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. , 2004, Water research.

[10]  M. Nyström,et al.  Separation of ions in acidic conditions using NF , 2002 .

[11]  C. Vandecasteele,et al.  Evaluating the charge of nanofiltration membranes , 2001 .

[12]  J. Gilron Experimental analysis of negative salt rejection in nanofiltration membranes , 2001 .

[13]  A. Wakisaka,et al.  Experimental approach to see molecular clustering in electrolyte solutions: Mass spectrometric analysis of nitric acid and sulfuric acid solutions , 2000 .

[14]  Menachem Elimelech,et al.  Relating Nanofiltration Membrane Performance to Membrane Charge (Electrokinetic) Characteristics , 2000 .

[15]  G. Hagmeyer,et al.  Modelling the rejection of nanofiltration membranes using zeta potential measurements , 1999 .

[16]  Abdul Wahab Mohammad,et al.  Characterization and Prediction of Nanofiltration Membrane Performance—A General Assessment , 1998 .

[17]  G. Hagmeyer,et al.  Modelling the salt rejection of nanofiltration membranes for ternary ion mixtures and for single salts at different pH values , 1998 .

[18]  C. Vandecasteele,et al.  Influence of ion size and charge in nanofiltration , 1998 .

[19]  David Hasson,et al.  Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes , 1996 .

[20]  Frederick George Donnan,et al.  Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology , 1995 .

[21]  S. Nakao,et al.  Negative rejection of anions in the loose reverse osmosis separation of mono- and divalent ion mixtures , 1991 .

[22]  E. R. Nightingale,et al.  PHENOMENOLOGICAL THEORY OF ION SOLVATION. EFFECTIVE RADII OF HYDRATED IONS , 1959 .

[23]  G. Baumgarten,et al.  Wiederaufbereitung saurer Prozess(ab)wässer aus der Oberflächentechnik mit Membranverfahren , 1999 .

[24]  G. Baumgarten,et al.  BEHANDLUNG UND RECYCLING VON PROZESS(AB)WASSER AUS DER OBERFLACHENTECHNIK MIT MEMBRANVERFAHREN , 1999 .