Divergence Criterion for a Class of Random Series Related to the Partial Sums of I.I.D. Random Variables
暂无分享,去创建一个
[1] M. Talagrand,et al. Probability in Banach spaces , 1991 .
[2] Deli Li,et al. New Versions of Some Classical Stochastic Inequalities , 2013 .
[3] P. Erdos. Remark on my Paper "On a Theorem of Hsu and Robbins" , 1950 .
[4] The Marcinkiewicz–Zygmund LLN in Banach Spaces: A Generalized Martingale Approach , 2010 .
[5] A. Kolmogoroff. Die elementare Wahrscheinlichkeitsrechnung , 1933 .
[6] L. J. Savage,et al. Symmetric measures on Cartesian products , 1955 .
[7] H Robbins,et al. Complete Convergence and the Law of Large Numbers. , 1947, Proceedings of the National Academy of Sciences of the United States of America.
[8] Andrew Rosalsky,et al. A Refinement of the Kolmogorov–Marcinkiewicz–Zygmund Strong Law of Large Numbers , 2010 .
[9] V. Gaposhkin. Necessary convergence conditions for series ΣαnSn in the case of identically distributed independent random quantities , 1976 .
[10] J. Hoffmann-jorgensen. Sums of independent Banach space valued random variables , 1974 .
[11] An Extension of Theorems of Hechner and Heinkel , 2015 .
[12] L. H. Koopmans,et al. On the Divergence of a Certain Random Series , 1974 .
[13] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[14] Deli Li,et al. A characterization of a new type of strong law of large numbers , 2012, 1210.6336.
[15] Paul Erdös,et al. On a Theorem of Hsu and Robbins , 1949 .