Forecasting the Distribution of Economic Variables in a Data-Rich Environment

This article investigates the relevance of considering a large number of macroeconomic indicators to forecast the complete distribution of a variable. The baseline time series model is a semiparametric specification based on the quantile autoregressive (QAR) model that assumes that the quantiles depend on the lagged values of the variable. We then augment the time series model with macroeconomic information from a large dataset by including principal components or a subset of variables selected by LASSO. We forecast the distribution of the h-month growth rate for four economic variables from 1975 to 2011 and evaluate the forecast accuracy relative to a stochastic volatility model using the quantile score. The results for the output and employment measures indicate that the multivariate models outperform the time series forecasts, in particular at long horizons and in tails of the distribution, while for the inflation variables the improved performance occurs mostly at the 6-month horizon. We also illustrate the practical relevance of predicting the distribution by considering forecasts at three dates during the last recession.

[1]  Mark W. Watson,et al.  Understanding Changes in International Business Cycle Dynamics , 2005 .

[2]  D. Zerom,et al.  Asymmetric Quantile Persistence and Predictability: The Case of U.S. Inflation , 2012 .

[3]  J. Stock,et al.  Macroeconomic Forecasting Using Diffusion Indexes , 2002 .

[4]  J. Geweke,et al.  Optimal Prediction Pools , 2008 .

[5]  Todd E. Clark,et al.  Macroeconomic Forecasting Performance under Alternative Specifications of Time-Varying Volatility , 2015 .

[6]  Arturo Estrella,et al.  The term structure as a predictor of real economic activity , 1991 .

[7]  Shaun P. Vahey,et al.  Forecast densities for economic aggregates from disaggregate ensembles , 2010 .

[8]  Marco Lippi,et al.  THE GENERALIZED DYNAMIC FACTOR MODEL: REPRESENTATION THEORY , 2001, Econometric Theory.

[9]  V. Chernozhukov,et al.  QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.

[10]  Shaun P. Vahey,et al.  Combining VAR and DSGE forecast densities , 2011 .

[11]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[12]  L. Kilian,et al.  How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation , 2008 .

[13]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[14]  Gianni Amisano,et al.  Comparing Density Forecasts via Weighted Likelihood Ratio Tests , 2007 .

[15]  Prof. Martino Grasselli Stochastic volatility models , 2007 .

[16]  T. Gneiting,et al.  Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules , 2011 .

[17]  N. Shephard Stochastic volatility models , 2010 .

[18]  J. Stock,et al.  Why Has U.S. Inflation Become Harder to Forecast , 2007 .

[19]  B. Rossi,et al.  Evaluating Predictive Densities of U.S. Output Growth and Inflation in a Large Macroeconomic Data Set , 2013 .

[20]  J. Stock,et al.  How Did Leading Indicator Forecasts Perform during the 2001 Recession? , 2003 .

[21]  Tatevik Sekhposyan,et al.  Has Models' Forecasting Performance for US Output Growth and Inflation Changed over Time, and When? , 2008 .

[22]  R. Koenker Quantile regression for longitudinal data , 2004 .

[23]  J. Bai,et al.  Forecasting economic time series using targeted predictors , 2008 .

[24]  Tae-Hwy Lee,et al.  To Combine Forecasts or to Combine Information? , 2010 .

[25]  James H. Stock,et al.  Dynamic Factor Models , 2011 .

[26]  Jianqing Fan,et al.  Quantile autoregression. Commentary , 2006 .

[27]  Shaun P. Vahey,et al.  Combining forecast densities from VARs with uncertain instabilities , 2010 .

[28]  J. Stock,et al.  Forecasting with Many Predictors , 2006 .

[29]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[30]  T. Sargent,et al.  Evolving Post-World War II U.S. Inflation Dynamics , 2001, NBER Macroeconomics Annual.

[31]  C. De Mol,et al.  Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components? , 2006, SSRN Electronic Journal.

[32]  R. Koenker Additive models for quantile regression: Model selection and confidence bandaids , 2010 .

[33]  Barbara Rossi,et al.  Forecast comparisons in unstable environments , 2010 .

[34]  Halbert White,et al.  Tests of Conditional Predictive Ability , 2003 .

[35]  James Mitchell,et al.  Evaluating density forecasts: forecast combinations, model mixtures, calibration and sharpness , 2011 .

[36]  J. Geweke,et al.  Prediction Using Several Macroeconomic Models , 2013, Review of Economics and Statistics.

[37]  Yang Yang,et al.  Chapter 13 Bagging Binary and Quantile Predictors for Time Series: Further Issues , 2008 .

[38]  Norman R. Swanson,et al.  Chapter 5 Predictive Density Evaluation , 2006 .

[39]  D. Zerom,et al.  Asymmetric Quantile Persistence and Predictability: The Case of US Inflation , 2015 .

[40]  Todd E. Clark Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility , 2011 .

[41]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[42]  Dawit Zerom,et al.  Are Macroeconomic Variables Useful for Forecasting the Distribution of U.S. Inflation? , 2009 .

[43]  Yang Yang,et al.  Bagging binary and quantile predictors for time series , 2006 .

[44]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[45]  R. Koenker,et al.  Regression Quantiles , 2007 .

[46]  Rachida Ouysse Forecasting Using a Large Number of Predictors: Bayesian Model Averaging Versus Principal Components Regression , 2013 .

[47]  A. Belloni,et al.  L1-Penalized Quantile Regression in High Dimensional Sparse Models , 2009, 0904.2931.

[48]  M. Hallin,et al.  The Generalized Dynamic-Factor Model: Identification and Estimation , 2000, Review of Economics and Statistics.

[49]  Roger Koenker,et al.  Quantile Autoregression , 2006 .

[50]  Norman R. Swanson,et al.  Predictive Density Evaluation , 2005 .

[51]  J. Geweke,et al.  Comparing and Evaluating Bayesian Predictive Distributions of Asset Returns , 2008 .

[52]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .