A Derivation of a Microscopic Entropy and Time Irreversibility From the Discreteness of Time
暂无分享,去创建一个
[1] T. D. Lee,et al. Can time be a discrete dynamical variable , 1983 .
[2] H. Stowell. The emperor's new mind R. Penrose, Oxford University Press, New York (1989) 466 pp. $24.95 , 1990, Neuroscience.
[3] J. Perring,et al. 2π Decay of the K20 Meson , 1964 .
[4] Wilfred F. van Gunsteren,et al. Computation of free energy , 2002 .
[5] Michael Treichel. Thermodynamik und Statistische Mechanik , 2000 .
[6] Friedrich Hasenöhrl,et al. Über die mechanische Bedeutung des zweiten Hauptsatzes der Wärmetheorie , 2012 .
[7] R. Penrose. Cycles of Time , 2010 .
[8] I. Prigogine,et al. The end of certainty : time, chaos, and the new laws of nature , 1997 .
[9] Zurek,et al. Decoherence, chaos, and the second law. , 1994, Physical review letters.
[10] Principles of discrete time mechanics: III. Quantum field theory , 1997, hep-th/9707029.
[11] M. Klein,et al. Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .
[12] Betty Jean Harmsen. The discrete calculus of variations , 1995 .
[13] P. Caldirola. A new model of classical electron , 1956 .
[14] Robert Lévi,et al. Théorie de l'action universelle et discontinue , 1927 .
[15] Chen Ning Yang,et al. On quantized space-time , 1947 .
[16] S. Nosé. A molecular dynamics method for simulations in the canonical ensemble , 1984 .
[17] E. Recami,et al. Introduction of a quantum of time (chronon), and its consequences for quantum mechanics , 1997, quant-ph/9706059.
[18] H. Price. Time's arrow and Archimedes' point new directions for the physics of time , 1997 .
[19] D. Leith,et al. Observation of time-reversal violation in the B0 meson system. , 2012, Physical review letters.
[20] M. C. Valsakumar. Stochasticity, decoherence and an arrow of time from the discretization of time? , 2005 .
[21] C. Masreliez. Scale Expanding Cosmos Theory I -An introduction , 2004 .
[22] G. Jaroszkiewicz. Principles of Discrete Time Mechanics , 2014 .
[23] S. Nosé,et al. An extension of the canonical ensemble molecular dynamics method , 1986 .
[24] S. Sohrab. On a Scale Invariant Model of Statistical Mechanics, Kinetic Theory of Ideal Gas, and Riemann Hypothesis , 2012 .
[25] Hoover,et al. Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.
[26] P. Hünenberger. Thermostat Algorithms for Molecular Dynamics Simulations , 2005 .
[27] P. Corkum,et al. Conical Intersection Dynamics in NO2 Probed by Homodyne High-Harmonic Spectroscopy , 2011, Science.
[28] W. Hoover,et al. Nosé–Hoover nonequilibrium dynamics and statistical mechanics , 2007 .
[29] C. Rovelli. Zakopane lectures on loop gravity , 2011, 1102.3660.
[30] U. Nottingham,et al. Principles of discrete time mechanics: II. Classical field theory , 1997, hep-th/9703080.
[31] H. Elze. Discrete mechanics, “time machines” and hybrid systems , 2013, 1310.2862.
[32] D. Haar,et al. Statistical Physics , 1971, Nature.
[33] S. Sohrab. Quantum theory of fields from Planck to cosmic scales , 2010 .
[34] William G. Hoover,et al. Time Reversibility, Computer Simulation, And Chaos , 1999 .
[35] G. Jaroszkiewicz,et al. Principles of discrete time mechanics: I. Particle systems , 1997, hep-th/9703079.
[36] P. Hänggi,et al. Thermostated Hamiltonian dynamics with log oscillators. , 2013, The journal of physical chemistry. B.
[37] Vincent S. Steckline,et al. Zermelo, Boltzmann, and the recurrence paradox , 1983 .
[38] Rudolf Clausius,et al. The Mechanical Theory of Heat: With Its Applications to the Steam-Engine and to the Physical Properties of Bodies , 2015 .
[39] S. Nosé. A unified formulation of the constant temperature molecular dynamics methods , 1984 .