Interactive global illumination in dynamic participating media using selective photon tracing

Global illumination in dynamic participating media is expensive, but in many applications interactivity is required. We use selective photon tracing to compute global illumination, which enables us to update mostly those photon paths that are affected by changes in the media. We enhance this technique by eliminating the need of shooting corrective photons, which leads to a significant speed-up. Also, we adaptively control spatial traced photon density in those regions in which photon-media intersection is more likely. This enables better control of local reconstruction of global illumination. Using our technique we achieve interactive speeds on a simple desktop PC.

[1]  Anselmo Lastra,et al.  Real‐Time Cloud Rendering , 2001, Comput. Graph. Forum.

[2]  François X. Sillion,et al.  Global Illumination Techniques for the Simulation of Participating Media , 1997, Rendering Techniques.

[3]  Philipp Slusallek,et al.  Realtime Caustics using Distributed Photon Mapping , 2004, Rendering Techniques.

[4]  Anselmo Lastra,et al.  Simulation of cloud dynamics on graphics hardware , 2003, HWWS '03.

[5]  Kadi Bouatouch,et al.  Global Illumination in Presence of Participating Media with General Properties , 1995 .

[6]  Bent Dalgaard Larsen,et al.  Simulating Photon Mapping for Real-time Applications , 2004, Rendering Techniques.

[7]  Alexei A. Efros,et al.  Fast bilateral filtering for the display of high-dynamic-range images , 2002 .

[8]  David S. Ebert,et al.  Rendering and animation of gaseous phenomena by combining fast volume and scanline A-buffer techniques , 1990, SIGGRAPH.

[9]  Dimitris N. Metaxas,et al.  Modeling the motion of a hot, turbulent gas , 1997, SIGGRAPH.

[10]  CarpenterLoren The A -buffer, an antialiased hidden surface method , 1984 .

[11]  Hans-Peter Seidel,et al.  Interactive Global Illumination using Selective Photon Tracing , 2002, Rendering Techniques.

[12]  Mateu Sbert,et al.  Real‐time Light Animation , 2004, Comput. Graph. Forum.

[13]  Xavier Pueyo,et al.  The SIR rendering architecture , 1998, Comput. Graph..

[14]  Kazufumi Kaneda,et al.  A simple, efficient method for realistic animation of clouds , 2000, SIGGRAPH.

[15]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[16]  Jos Stam,et al.  Multiple Scattering as a Diffusion Process , 1995, Rendering Techniques.

[17]  Loren C. Carpenter,et al.  The A -buffer, an antialiased hidden surface method , 1984, SIGGRAPH.

[18]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[19]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[20]  Eugene Fiume,et al.  Depicting fire and other gaseous phenomena using diffusion processes , 1995, SIGGRAPH.

[21]  David S. Ebert,et al.  Texturing and Modeling: A Procedural Approach , 1994 .

[22]  T KajiyaJames,et al.  Ray tracing volume densities , 1984 .

[23]  Per H. Christensen,et al.  Efficient simulation of light transport in scenes with participating media using photon maps , 1998, SIGGRAPH.