Molybdenum-based catalysts for the decomposition of ammonia: In situ X-ray diffraction studies, microstructure, and catalytic properties

[1]  A. Burrell,et al.  High Surface Area Molybdenum Nitride Support for Fuel Cell Electrodes , 2011 .

[2]  A. Lu,et al.  High-temperature stable, iron-based core-shell catalysts for ammonia decomposition. , 2011, Chemistry.

[3]  E. Zhao,et al.  Displacive phase transition, structural stability, and mechanical properties of the ultra‐incompressible and hard MoN by first principles , 2010 .

[4]  J. Hargreaves,et al.  A comparison of the reactivity of lattice nitrogen in Co3Mo3N and Ni2Mo3N catalysts , 2009 .

[5]  J. Lauterbach,et al.  Characterization of K-Promoted Ru Catalysts for Ammonia Decomposition Discovered Using High-Throughput Experimentation , 2008 .

[6]  J. G. Goodwin,et al.  Ammonia Decomposition on Tungsten-Based Catalysts in the Absence and Presence of Syngas , 2008 .

[7]  L. Kienle,et al.  Synthesis and characterisation of hexagonal molybdenum nitrides , 2006 .

[8]  Paolo Scardi,et al.  PM2K: a flexible program implementing Whole Powder Pattern Modelling , 2006 .

[9]  B. Braïda,et al.  Concerning the Structure of Hydrogen Molybdenum Bronze Phase III. A Combined Theoretical−Experimental Study , 2005 .

[10]  S. Yin,et al.  A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications , 2004 .

[11]  S. Yin,et al.  Investigation on the catalysis of COx-free hydrogen generation from ammonia , 2004 .

[12]  K. Leinenweber,et al.  Determination of the crystal structure of d-MoN by neutron diffraction , 2004 .

[13]  Ferdi Schüth,et al.  High-surface-area oxides obtained by an activated carbon route , 2002 .

[14]  K. Aika,et al.  Molybdenum nitride and carbide catalysts for ammonia synthesis , 2001 .

[15]  P. Scardi,et al.  Effect of a crystallite size distribution on X‐ray diffraction line profiles and whole‐powder‐pattern fitting , 2000 .

[16]  Hea-Kyung Park,et al.  Surface properties and reactivity of supported and unsupported molybdenum nitride catalysts , 1997 .

[17]  L. Thompson,et al.  Molybdenum Nitride Catalysts , 1996 .

[18]  L. Thompson,et al.  Temperature-programmed desorption and decomposition of NH3 over molybdenum nitride films , 1995 .

[19]  L. Thompson,et al.  Molybdenum nitride catalysts: I. Influence of the synthesis factors on structural properties , 1994 .

[20]  R. S. Wise,et al.  Catalytic NH3 Decomposition by Topotactic Molybdenum Oxides and Nitrides: Effect on Temperature Programmed γ-Mo2N Synthesis , 1994 .

[21]  S. Adams,et al.  Proton ordering in the Peierls-distorted hydrogen molybdenum bronze H0.33MoO3: structure and physical properties , 1993 .

[22]  A. Stacy,et al.  Preparation of high-surface-area transition-metal nitrides: molybdenum nitrides, Mo2N and MoN , 1990 .

[23]  G. Caglioti,et al.  Choice of collimators for a crystal spectrometer for neutron diffraction , 1958 .

[24]  R. C. Evans Les Dislocations dans les Cristaux by W. T. Read , 1957 .

[25]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[26]  D. Seidman,et al.  Subnanometer-scale chemistry and structure of α-iron/molybdenum nitride heterophase interfaces , 2002 .

[27]  P. Ettmayer Das System Molybdän-Stickstoff , 1970 .