Typed Higher-Order Variant of SROIQ - Why Not?

We provideTH(SROIQ) a typed higher-order extension ofSROIQ, that is itself a syntactic variant of SROIQ, i.e., it is polynomially reducible into it. We also discuss modelling scenarios in which such a language is useful.

[1]  Yevgeny Kazakov,et al.  RIQ and SROIQ Are Harder than SHOIQ , 2008, KR.

[2]  Vojtech Svátek,et al.  Towards Typed Higher-Order Description Logics , 2013, Description Logics.

[3]  Michael Kifer,et al.  HILOG: A Foundation for Higher-Order Logic Programming , 1993, J. Log. Program..

[4]  Boris Motik,et al.  On the Properties of Metamodeling in OWL , 2005, J. Log. Comput..

[5]  Alain Pirotte,et al.  Materialization: A Powerful and Ubiquitous Abstraction Pattern , 1994, VLDB.

[6]  Ian Horrocks,et al.  RDFS(FA): Connecting RDF(S) and OWL DL , 2007, IEEE Transactions on Knowledge and Data Engineering.

[7]  Peter F. Patel-Schneider,et al.  OWL 2 Web Ontology Language New Features and Rationale , 2009 .

[8]  Nicola Guarino,et al.  An Overview of OntoClean , 2004, Handbook on Ontologies.

[9]  Steve Mann Natural interfaces for musical expression: physiphones and a physics-based organology , 2007, NIME '07.

[10]  Boris Motik,et al.  On the Properties of Metamodeling in OWL , 2007, J. Log. Comput..

[11]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[12]  Johanna Völker,et al.  Integrated Metamodeling and Diagnosis in OWL 2 , 2010, SEMWEB.

[13]  Andrzej Szalas,et al.  Second-order reasoning in description logics , 2006, J. Appl. Non Class. Logics.

[14]  Vojtech Svátek,et al.  Metamodeling-Based Coherence Checking of OWL Vocabulary Background Models , 2013, OWLED.

[15]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[16]  Maurizio Lenzerini,et al.  On Higher-Order Description Logics , 2009, Description Logics.

[17]  Jeff Z. Pan,et al.  OWL FA: a metamodeling extension of OWL D , 2006, WWW '06.

[18]  Francesco M. Donini,et al.  Second-Order Description Logics: Semantics, Motivation, and a Calculus , 2010, Description Logics.