暂无分享,去创建一个
[1] J. Yorke,et al. Dimension of chaotic attractors , 1982 .
[2] A. Kolmogorov,et al. Entropy and "-capacity of sets in func-tional spaces , 1961 .
[3] J. Schwinger. THE GEOMETRY OF QUANTUM STATES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.
[4] D. Pastorello. Geometric Hamiltonian quantum mechanics and applications , 2016 .
[5] Dariusz Chruściński,et al. Geometric Aspects of Quantum Mechanics and Quantum Entanglement , 2006 .
[6] A. B. Boyd,et al. Maxwell Demon Dynamics: Deterministic Chaos, the Szilard Map, and the Intelligence of Thermodynamic Systems. , 2015, Physical review letters.
[7] Aharonov,et al. Geometry of quantum evolution. , 1990, Physical review letters.
[8] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[9] D. Pastorello. A geometric Hamiltonian description of composite quantum systems and quantum entanglement , 2014, 1408.1839.
[10] Yihong Wu,et al. Rényi Information Dimension: Fundamental Limits of Almost Lossless Analog Compression , 2010, IEEE Transactions on Information Theory.
[11] Andrei N. Kolmogorov,et al. On the Shannon theory of information transmission in the case of continuous signals , 1956, IRE Trans. Inf. Theory.
[12] G. Gibbons. Typical states and density matrices , 1992 .
[13] Jozef B Uffink. Compendium of the Foundations of Classical Statistical Physics , 2007 .
[14] J. Crutchfield,et al. Geometric Quantum State Estimation , 2020, 2008.08679.
[15] Abhay Ashtekar,et al. Geometrical Formulation of Quantum Mechanics , 1999 .
[16] A. Rényi. On the dimension and entropy of probability distributions , 1959 .
[17] C. Beck,et al. Thermodynamics of chaotic systems , 1993 .
[18] M. Yamaguti,et al. Chaos and Fractals , 1987 .
[19] J. Crutchfield,et al. Regularities unseen, randomness observed: levels of entropy convergence. , 2001, Chaos.
[20] The Ehrenfest picture and the geometry of Quantum Mechanics , 2013, 1306.1453.
[21] Stéphane Puechmorel,et al. Approximation of Densities on Riemannian Manifolds , 2019, Entropy.
[22] Information content for quantum states , 1999, quant-ph/9906085.
[23] F. Strocchi,et al. COMPLEX COORDINATES AND QUANTUM MECHANICS , 1966 .
[24] Daniel W. Hook,et al. On quantum microcanonical equilibrium , 2006, quant-ph/0612120.
[25] Abhay Ashtekar,et al. Geometry of quantum mechanics , 2008 .
[26] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[27] Gilles Pagès,et al. Introduction to vector quantization and its applications for numerics , 2015 .
[28] A. B. Boyd,et al. Identifying functional thermodynamics in autonomous Maxwellian ratchets , 2015, 1507.01537.
[29] Page,et al. Geometrical description of Berry's phase. , 1987, Physical review. A, General physics.
[30] D. Brody,et al. Thermodynamics of quantum heat bath , 2014, 1406.5780.
[31] Ya. G. Sinai,et al. On the Notion of Entropy of a Dynamical System , 2010 .
[32] S. Graf,et al. Foundations of Quantization for Probability Distributions , 2000 .
[33] D. Brody,et al. Geometric quantum mechanics , 1999, quant-ph/9906086.
[34] The quantum canonical ensemble , 1997, quant-ph/9709048.
[35] J. Avron,et al. An elementary introduction to the geometry of quantum states with pictures , 2019, Reviews in Mathematical Physics.
[36] Geometric Hamiltonian formulation of quantum mechanics in complex projective spaces , 2015 .
[37] Heslot,et al. Quantum mechanics as a classical theory. , 1985, Physical review. D, Particles and fields.
[38] Yunmei Chen,et al. Cumulative residual entropy: a new measure of information , 2004, IEEE Transactions on Information Theory.
[39] G. Marmo,et al. Geometrical description of quantum mechanics—transformations and dynamics , 2010, 1006.0530.
[40] J. R. Dorfman,et al. An introduction to chaos in nonequilibrium statistical mechanics , 1999 .
[41] G. Marmo,et al. Geometrization of quantum mechanics , 2007, math-ph/0701053.
[42] Murali Rao,et al. More on a New Concept of Entropy and Information , 2005 .