Quantum Information Dimension and Geometric Entropy

Geometric quantum mechanics, through its differential-geometric underpinning, provides additional tools of analysis and interpretation that bring quantum mechanics closer to classical mechanics: state spaces in both are equipped with symplectic geometry. This opens the door to revisiting foundational questions and issues, such as the nature of quantum entropy, from a geometric perspective. Central to this is the concept of geometric quantum state—the probability measure on a system’s space of pure states. This space’s continuity leads us to introduce two analysis tools, inspired by Renyi’s information theory, to characterize and quantify fundamental properties of geometric quantum states: the quantum information dimension that is the rate of geometric quantum state compression and the dimensional geometric entropy that monitors information stored in quantum states. We recount their classical definitions, information-theoretic meanings, and physical interpretations, and adapt them to quantum systems via the geometric approach. We then explicitly compute them in various examples and classes of quantum system. We conclude commenting on future directions for information in geometric quantum mechanics.

[1]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[2]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[3]  J. Schwinger THE GEOMETRY OF QUANTUM STATES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[4]  D. Pastorello Geometric Hamiltonian quantum mechanics and applications , 2016 .

[5]  Dariusz Chruściński,et al.  Geometric Aspects of Quantum Mechanics and Quantum Entanglement , 2006 .

[6]  A. B. Boyd,et al.  Maxwell Demon Dynamics: Deterministic Chaos, the Szilard Map, and the Intelligence of Thermodynamic Systems. , 2015, Physical review letters.

[7]  Aharonov,et al.  Geometry of quantum evolution. , 1990, Physical review letters.

[8]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[9]  D. Pastorello A geometric Hamiltonian description of composite quantum systems and quantum entanglement , 2014, 1408.1839.

[10]  Yihong Wu,et al.  Rényi Information Dimension: Fundamental Limits of Almost Lossless Analog Compression , 2010, IEEE Transactions on Information Theory.

[11]  Andrei N. Kolmogorov,et al.  On the Shannon theory of information transmission in the case of continuous signals , 1956, IRE Trans. Inf. Theory.

[12]  G. Gibbons Typical states and density matrices , 1992 .

[13]  Jozef B Uffink Compendium of the Foundations of Classical Statistical Physics , 2007 .

[14]  J. Crutchfield,et al.  Geometric Quantum State Estimation , 2020, 2008.08679.

[15]  Abhay Ashtekar,et al.  Geometrical Formulation of Quantum Mechanics , 1999 .

[16]  A. Rényi On the dimension and entropy of probability distributions , 1959 .

[17]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[18]  M. Yamaguti,et al.  Chaos and Fractals , 1987 .

[19]  J. Crutchfield,et al.  Regularities unseen, randomness observed: levels of entropy convergence. , 2001, Chaos.

[20]  The Ehrenfest picture and the geometry of Quantum Mechanics , 2013, 1306.1453.

[21]  Stéphane Puechmorel,et al.  Approximation of Densities on Riemannian Manifolds , 2019, Entropy.

[22]  Information content for quantum states , 1999, quant-ph/9906085.

[23]  F. Strocchi,et al.  COMPLEX COORDINATES AND QUANTUM MECHANICS , 1966 .

[24]  Daniel W. Hook,et al.  On quantum microcanonical equilibrium , 2006, quant-ph/0612120.

[25]  Abhay Ashtekar,et al.  Geometry of quantum mechanics , 2008 .

[26]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[27]  Gilles Pagès,et al.  Introduction to vector quantization and its applications for numerics , 2015 .

[28]  A. B. Boyd,et al.  Identifying functional thermodynamics in autonomous Maxwellian ratchets , 2015, 1507.01537.

[29]  Page,et al.  Geometrical description of Berry's phase. , 1987, Physical review. A, General physics.

[30]  D. Brody,et al.  Thermodynamics of quantum heat bath , 2014, 1406.5780.

[31]  Ya. G. Sinai,et al.  On the Notion of Entropy of a Dynamical System , 2010 .

[32]  S. Graf,et al.  Foundations of Quantization for Probability Distributions , 2000 .

[33]  D. Brody,et al.  Geometric quantum mechanics , 1999, quant-ph/9906086.

[34]  The quantum canonical ensemble , 1997, quant-ph/9709048.

[35]  J. Avron,et al.  An elementary introduction to the geometry of quantum states with pictures , 2019, Reviews in Mathematical Physics.

[36]  Geometric Hamiltonian formulation of quantum mechanics in complex projective spaces , 2015 .

[37]  Heslot,et al.  Quantum mechanics as a classical theory. , 1985, Physical review. D, Particles and fields.

[38]  Yunmei Chen,et al.  Cumulative residual entropy: a new measure of information , 2004, IEEE Transactions on Information Theory.

[39]  G. Marmo,et al.  Geometrical description of quantum mechanics—transformations and dynamics , 2010, 1006.0530.

[40]  J. R. Dorfman,et al.  An introduction to chaos in nonequilibrium statistical mechanics , 1999 .

[41]  G. Marmo,et al.  Geometrization of quantum mechanics , 2007, math-ph/0701053.

[42]  Murali Rao,et al.  More on a New Concept of Entropy and Information , 2005 .