A size-resolved pelagic ecosystem model

[1]  D. Schimel,et al.  The Global Carbon Cycle , 2010 .

[2]  Meng Zhou What determines the slope of a plankton biomass spectrum , 2006 .

[3]  T. Kiørboe,et al.  Motility patterns and mate encounter rates in planktonic copepods , 2005 .

[4]  P. Oke,et al.  A plankton population model with biomechanical descriptions of biological processes in an idealised 2D ocean basin , 2004 .

[5]  R. Armstrong A hybrid spectral representation of phytoplankton growth and zooplankton response: The control rod model of plankton interaction , 2003 .

[6]  D M Lewis,et al.  Planktonic encounter rates in homogeneous isotropic turbulence: the case of predators with limited fields of sensory perception. , 2003, Journal of theoretical biology.

[7]  J. Pitchford,et al.  The relationship between plankton blooms, the hatching of fish larvae, and recruitment , 2003 .

[8]  W. Gentleman A chronology of plankton dynamics in silico: how computer models have been used to study marine ecosystems , 2002, Hydrobiologia.

[9]  F. Carlotti,et al.  Development and egg production in Centropages typicus (Copepoda: Calanoida) fed different food types: a laboratory study , 2001 .

[10]  Z. Finkel Light absorption and size scaling of light‐limited metabolism in marine diatoms , 2001 .

[11]  André W. Visser,et al.  Modelling the attack success of planktonic predators: patterns and mechanisms of prey size selectivity , 2000 .

[12]  Thomas M. Powell,et al.  Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system , 2000 .

[13]  A. Irwin,et al.  Modeling size-dependent photosynthesis: light absorption and the allometric rule. , 2000, Journal of theoretical biology.

[14]  Andrew M. Edwards,et al.  The role of higher predation in plankton population models , 2000 .

[15]  J. Gillooly,et al.  Effect of body size and temperature on generation time in zooplankton , 2000 .

[16]  R. Armstrong An optimization‐based model of iron—light—ammonium colimitation of nitrate uptake and phytoplankton growth , 1999 .

[17]  Hin-Fatt Cheong,et al.  A size-based ecosystem model for pelagic waters , 1998 .

[18]  Meng Zhou,et al.  Population dynamics theory of plankton based on biomass spectra , 1997 .

[19]  M. Huntley,et al.  Influence of animals on turbulence in the sea , 1997 .

[20]  P. K. Bjørnsen,et al.  Zooplankton grazing and growth: Scaling within the 2‐2,‐μm body size range , 1997 .

[21]  M. Heath Size spectrum dynamics and the planktonic ecosystem of Loch Linnhe , 1995 .

[22]  E. Tang,et al.  The allometry of algal growth rates , 1995 .

[23]  J. J. Morgan,et al.  Aquatic Chemistry: Interfacial and Interspecies Processes , 1995 .

[24]  G. Jackson Coagulation of Marine Algae , 1995 .

[25]  T. Kiørboe,et al.  Scaling of fecundity, growth and development in marine planktonic copepods , 1995 .

[26]  K. Sand‐Jensen,et al.  Size-dependent nitrogen uptake in micro- and macroalgae , 1995 .

[27]  P. K. Bjørnsen,et al.  The size ratio between planktonic predators and their prey , 1994 .

[28]  H. Claustre,et al.  Prochlorococcus and Synechococcus: A comparative study of their optical properties in relation to their size and pigmentation , 1993 .

[29]  U. Sommer Some size relationships in phytoflagellate motility , 1988, Hydrobiologia.

[30]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[31]  B. Osborne,et al.  Light and Photosynthesis in Aquatic Ecosystems. , 1985 .

[32]  P. Smolarkiewicz A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion , 1984 .

[33]  R. Peters The Ecological Implications of Body Size , 1983 .

[34]  John H. Steele,et al.  A Simple Plankton Model , 1981, The American Naturalist.

[35]  G. Batchelor,et al.  Mass transfer from small particles suspended in turbulent fluid , 1980, Journal of Fluid Mechanics.

[36]  K. Banse,et al.  Adult Body Mass and Annual Production/Biomass Relationships of Field Populations , 1980 .

[37]  W. Silvert,et al.  Energy flux in the pelagic ecosystem: A time‐dependent equation , 1978 .

[38]  D. M. Ware,et al.  Bioenergetics of Pelagic Fish: Theoretical Change in Swimming Speed and Ration with Body Size , 1978 .

[39]  K. Denman,et al.  Organisation in the pelagic ecosystem , 1977, Helgoländer wissenschaftliche Meeresuntersuchungen.

[40]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[41]  Tom Fenchel,et al.  Intrinsic rate of natural increase: The relationship with body size , 1974, Oecologia.

[42]  R. W. Sheldon,et al.  The Size Distribution of Particles in the OCEAN1 , 1972 .

[43]  T. Smayda The suspension and sinking of phytoplankton in the sea , 1970 .

[44]  P. R. Sloan,et al.  RELATIONSHIP BETWEEN CARBON CONTENT, CELL VOLUME, AND AREA IN PHYTOPLANKTON , 1966 .

[45]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[46]  M. Baird,et al.  Towards a mechanistic model of plankton population dynamics , 1999 .

[47]  Q. Bone The biology of pelagic Tunicates , 1998 .

[48]  Andrew M. Edwards,et al.  Oscillatory behaviour in a three-component plankton population model , 1996 .

[49]  Thomas Kiørboe,et al.  Turbulence, Phytoplankton Cell Size, and the Structure of Pelagic Food Webs , 1993 .

[50]  M. Fasham,et al.  Modelling the Marine Biota , 1993 .

[51]  J. Stephens,et al.  Diurnal variations of convective mixing and the spring bloom of phytoplankton , 1993 .

[52]  J. G. Field,et al.  The size-based dynamics of plankton food webs. I. A simulation model of carbon and nitrogen flows , 1991 .

[53]  N. Heaps,et al.  Three-dimensional coastal ocean models , 1987 .

[54]  James Willard Nybakken,et al.  Marine Biology: An Ecological Approach , 1982 .

[55]  F. A. Richards,et al.  The influence of organisms on the composition of sea-water , 1963 .

[56]  A. J. Marshall,et al.  Textbook of zoology : Invertebrates , 1962 .