Model reference adaptive control for an ionic polymer metal composite in underwater applications

Ionic polymer metal composite (IPMC) materials are in an early stage of development. Their response as actuators is still very unpredictable. Their dynamic response is still subjected to several critical parameters that vary with time, thus extracting an accurate and repeatable model is very difficult. This paper presents the design and implementation of an adaptive efficient position control system for an IPMC actuator working in underwater conditions. The control system is an model reference adaptive control (MRAC) based on a reference model and an adaptation that controls a 1 cm × 0.5 cm length IPMC strip based on a Nafion 117 Na+ membrane. As the reference model a second-order empirical model of the plant is used. The control system is first simulated and then experimentally implemented within the LabVIEW framework.

[1]  Xiaobo Tan,et al.  Quasi-Static Positioning of Ionic Polymer-Metal Composite (IPMC) Actuators , 2005, AIM 2005.

[2]  K. Kim,et al.  Ionic polymer–metal composites: IV. Industrial and medical applications , 2005 .

[3]  Donald J. Leo,et al.  Bandwidth Characterization in the Micropositioning of Ionic Polymer Actuators , 2005 .

[4]  S. Nemat-Nasser,et al.  Comparative experimental study of ionic polymer–metal composites with different backbone ionomers and in various cation forms , 2003 .

[5]  K. Kim,et al.  The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles , 2000 .

[6]  Kinji Asaka,et al.  Morphology of electrodes and bending response of the polymer electrolyte actuator , 2001 .

[7]  Shuxiang Guo,et al.  Underwater Swimming Micro Robot Using IPMC Actuator , 2006, 2006 International Conference on Mechatronics and Automation.

[8]  Martin Levesley,et al.  Control of ionic polymer metal composites , 2003 .

[9]  K. Tsiakmakis,et al.  Measuring Motion Parameters of Ionic Polymer-Metal Composites (IPMC) Actuators with a CCD Camera , 2007, 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007.

[10]  Aniruddha Datta Adaptive Internal Model Control , 1998 .

[11]  Toshiharu Mukai,et al.  IPMCを用いたヘビ型水中ロボットにおける屈曲振幅増大現象のモデル化と解析;IPMCを用いたヘビ型水中ロボットにおける屈曲振幅増大現象のモデル化と解析;Modeling and Analysis of Incremental Bending Phenomenon of a Snake-Like Underwater Robot using IPMC , 2006 .

[12]  Mohsen Shahinpoor New effect in ionic polymeric gels: the ionic flexogelectric effect , 1995, Smart Structures.

[13]  Salvatore Graziani,et al.  Characterization of the harvesting capabilities of an ionic polymer metal composite device , 2008 .

[14]  J. O. Simpson,et al.  Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review , 1998 .

[15]  Kinji Asaka,et al.  Integrated design of IPMC actuator/sensor , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[16]  Mohsen Shahinpoor,et al.  Mechanoelectric effects in ionic gels , 2000 .

[17]  K. Kim,et al.  Ionic polymer-metal composites: I. Fundamentals , 2001 .

[18]  Mohsen Shahinpoor,et al.  Ionic Polymer-Metal Composites (IPMC) as Biomimetric Sensors and Actuators-Artificial Muscles , 1998 .

[19]  S. Nemat-Nasser Micromechanics of actuation of ionic polymer-metal composites , 2002 .

[20]  Luigi Fortuna,et al.  A nonlinear model for ionic polymer metal composites as actuators , 2007 .

[21]  Donald J. Leo,et al.  Feedback Control of the Bending Response of Ionic Polymer Actuators , 2001 .