Implementation of Lamarckian concepts in a Genetic Algorithm for structure solution from powder diffraction data

[1]  John Maynard Smith,et al.  The Theory of Evolution , 1958 .

[2]  M. Lehmann,et al.  A short hydrogen bond between near identical carboxyl groups in the α-modification of l-glutamic acid , 1980 .

[3]  Harold A. Scheraga,et al.  Structure and free energy of complex thermodynamic systems , 1988 .

[4]  J K Stalick,et al.  Accuracy in powder diffraction II , 1992 .

[5]  Kenneth D. M. Harris,et al.  CRYSTAL STRUCTURE DETERMINATION FROM POWDER DIFFRACTION DATA BY MONTE CARLO METHODS , 1994 .

[6]  Ernö Pretsch,et al.  Application of genetic algorithms in molecular modeling , 1994, J. Comput. Chem..

[7]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[8]  Brian H. Toby,et al.  Solid State Lithium Cyanocobaltates with a High Capacity for Reversible Dioxygen Binding: Synthesis, Reactivity, and Structures , 1995 .

[9]  Kenneth D. M. Harris,et al.  Crystal Structure Determination from Powder Diffraction Data , 1996 .

[10]  K. Harris,et al.  The application of a genetic algorithm for solving crystal structures from powder diffraction data , 1997 .

[11]  C. Freeman,et al.  5 – Simulated Annealing and Structure Solution , 1997 .

[12]  Kenneth D. M. Harris,et al.  Structure Determination of a Complex Organic Solid from X‐Ray Powder Diffraction Data by a Generalized Monte Carlo Method: The Crystal Structure of Red Fluorescein , 1997 .

[13]  P. Bruce,et al.  Ab initio solution of a complex crystal structure from powder-diffraction data using simulated-annealing method and a high degree of molecular flexibility , 1997 .

[14]  William I. F. David,et al.  Crystal structure determination from powder diffraction data by the application of a genetic algorithm , 1997 .

[15]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[16]  C. R. A. Catlow,et al.  Computer modelling in inorganic crystallography , 1997 .

[17]  Abraham Clearfield,et al.  Application of X-ray Powder Diffraction Techniques to the Solution of Unknown Crystal Structures , 1997 .

[18]  Roy L. Johnston,et al.  The genetic algorithm : Foundations and applications in structure solution from powder diffraction data , 1998 .

[19]  Roy L. Johnston,et al.  AN EVOLVING TECHNIQUE FOR POWDER STRUCTURE SOLUTION : FUNDAMENTALS AND APPLICATIONS OF THE GENETIC ALGORITHM , 1998 .

[20]  Kenneth D. M. Harris,et al.  Crystal Structure Solution from Powder Diffraction Data by the Monte Carlo Method , 1998 .

[21]  A. Bell,et al.  A synchrotron X-ray powder diffraction study of 4-(2,3,4-trifluorophenyl)-1,2,3,5-dithiadiazolyl. Crystal structure determination using a global optimisation method , 1999 .

[22]  Douglas Philp,et al.  Evolving Opportunities in Structure Solution from Powder Diffraction Data-Crystal Structure Determination of a Molecular System with Twelve Variable Torsion Angles. , 1999, Angewandte Chemie.

[23]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[24]  Kenneth D. M. Harris,et al.  PowderSolve – a complete package for crystal structure solution from powder diffraction patterns , 1999 .

[25]  Roy L. Johnston,et al.  Definition of a `guiding function' in global optimization: a hybrid approach combining energy and R-factor in structure solution from powder diffraction data , 2000 .