Ultra-high-Q Microresonator with Applications towards Single Nanoparticle Sensing

OF THE DISSERTATION Ultra-high-Q Microresonator with Applications towards Single Nanoparticle Sensing by Jiangang Zhu Doctor of Philosophy in Electrical Engineering Washington University in St. Louis, 2011 Research Advisor: Professor Lan Yang Whispering-gallery mode microcavities confines light and enables enhanced lightmatter interaction. They are great platforms for enhanced light-matter interactions. Using ultra-high-Q microtoroids and focusing on a phenomenon called mode splitting, we demonstrate the theory and experiments for real-time and label-free detection and size measurement of individual nanoparticles and viruses, with a theoretical size limit of R < 10 nm. It enables us to cover a large range of virus and nanoparticle sizes of great interest for biomedicine, nanotechnology, and environmental science. Moreover, this approach allows to identify the components of homogenous mixtures of particles. It exceeds the capabilities of existing schemes with its unique single particle resolution and ability for quantitative size measurement of individual nanoparticles. The techniques described here also pave the way for using active lasing microresonators as particle sensors, in which mode splitting serves as the origin of the radio frequency beatnote in the laser which indicates the binding of nanoparticles. It also lays a solid ground for using microresonators for bio-molecule detection. In addition, two non-spectrogram gased nanoparticle detection techniques: fiber taper detection and ii resonator reflection mode detection are demonstrated and future implementation on bimolecular detections are discussed.

[1]  Weijie Wang,et al.  Laser-induced removal of plate-like particles from solid surfaces , 2002 .

[2]  Yasha Yi,et al.  Reflection-mode sensing using optical microresonators , 2009 .

[3]  Dieter Braun,et al.  Protein detection by optical shift of a resonant microcavity , 2002 .

[4]  S. Ozdemir,et al.  Optical Detection of Single Nanoparticles With a Subwavelength Fiber-Taper , 2011, IEEE Photonics Technology Letters.

[5]  D. Heitmann,et al.  Optical modes in semiconductor microtube ring resonators. , 2006, Physical review letters.

[6]  P. Hoet,et al.  Nanoparticles – known and unknown health risks , 2004, Journal of nanobiotechnology.

[7]  M. Sumetsky,et al.  Whispering-gallery-bottle microcavities: the three-dimensional etalon. , 2004, Optics letters.

[8]  Masao Watanabe,et al.  Cleaning Technique Using High-Speed Steam-Water Mixed Spray , 2009 .

[9]  M. Stolzenburg,et al.  A Laminar-Flow, Water-Based Condensation Particle Counter (WCPC) , 2005 .

[10]  T. J. Kippenberg,et al.  Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip , 2004 .

[11]  Kerry J. Vahala,et al.  Phonon laser action in a tunable, two-level system , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[12]  Joel Villatoro,et al.  Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers. , 2005, Optics express.

[13]  S. Arnold,et al.  Single virus detection from the reactive shift of a whispering-gallery mode , 2008, Proceedings of the National Academy of Sciences.

[14]  Lan Yang,et al.  Demonstration of mode splitting in an optical microcavity in aqueous environment , 2010 .

[15]  K. Vahala,et al.  Ultralow-threshold microcavity Raman laser on a microelectronic chip. , 2004, Optics letters.

[16]  Lan Yang,et al.  Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid , 2009 .

[17]  K. Vahala,et al.  Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. , 2003, Physical review letters.

[18]  Souvik Banerjee,et al.  Principles and mechanisms of sub-micrometer particle removal by CO2 cryogenic technique , 2005 .

[19]  Songky Moon,et al.  Observation of an exceptional point in a chaotic optical microcavity. , 2009, Physical review letters.

[20]  S. Ozdemir,et al.  Detecting single viruses and nanoparticles using whispering gallery microlasers. , 2011, Nature nanotechnology.

[21]  Robert G. Knollenberg,et al.  The measurement of latex particle sizes using scattering ratios in the rayleigh scattering size range , 1989 .

[22]  V. Colvin The potential environmental impact of engineered nanomaterials , 2003, Nature Biotechnology.

[23]  Kathleen Richardson,et al.  Demonstration of chalcogenide glass racetrack microresonators. , 2008, Optics letters.

[24]  S. Arnold,et al.  Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism. , 2010, Optics express.

[25]  D. Heitmann,et al.  Optical microcavities formed by semiconductor microtubes using a bottlelike geometry. , 2008, Physical review letters.

[26]  F. Sheu,et al.  Using a slightly tapered optical fiber to attract and transport microparticles. , 2010, Optics express.

[27]  S. Arnold,et al.  Shift of whispering-gallery modes in microspheres by protein adsorption. , 2003, Optics letters.

[28]  D. Weiss,et al.  Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. , 1995, Optics letters.

[29]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[30]  Ian M. White,et al.  Refractometric sensors based on microsphere resonators , 2005 .

[31]  Lan Yang,et al.  Scatterer induced mode splitting in poly(dimethylsiloxane) coated microresonators , 2010 .

[32]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[33]  J. Solis,et al.  Laser-induced particle removal from silicon wafers , 2000, SPIE High-Power Laser Ablation.

[34]  S. Chu,et al.  Estimating surface-roughness loss and output coupling in microdisk resonators. , 1996, Optics letters.

[35]  Wolfgang Werner Langbein,et al.  Optical resonances in microcylinders: response to perturbations for biosensing , 2008 .

[36]  Kerry J. Vahala,et al.  Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process , 2005 .

[37]  Lan Yang,et al.  Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators. , 2009, Optics express.

[38]  Michel Meunier,et al.  CO2 laser‐assisted removal of submicron particles from solid surfaces , 1996 .

[39]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[40]  G. Zumofen,et al.  Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. , 2007, Physical review letters.

[41]  M. Roukes,et al.  Toward single-molecule nanomechanical mass spectrometry , 2005, Nature nanotechnology.

[42]  Vladimir S. Ilchenko,et al.  Rayleigh scattering in high-Q microspheres , 2000 .

[43]  G. S. Murugan,et al.  Optical manipulation of microspheres along a subwavelength optical wire. , 2007, Optics letters.

[44]  F. T. Gucker,et al.  A photoelectronic instrument for counting and sizing aerosol particles , 1954 .

[45]  K. T. Whitby,et al.  Aerosol classification by electric mobility: apparatus, theory, and applications , 1975 .

[46]  Y. Yi,et al.  Metallic nanoparticle on micro ring resonator for bio optical detection and sensing , 2010, Biomedical optics express.

[47]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[48]  Franco Cosi,et al.  Optical Microspherical Resonators for Biomedical Sensing , 2011, Sensors.

[49]  Xudong Fan,et al.  Liquid-core optical ring-resonator sensors. , 2006, Optics letters.

[50]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[51]  Lan Yang,et al.  Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers. , 2010, Optics express.

[52]  Frank Vollmer,et al.  High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria. , 2007, Optics express.

[53]  Lan Yang,et al.  Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities. , 2011, Optics express.

[54]  T. Mcrae,et al.  Thermo-optic locking of a semiconductor laser to a microcavity resonance. , 2009, Optics express.

[55]  Benjamin Y. H. Liu,et al.  A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter , 1974 .

[56]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[57]  S. Arnold,et al.  Whispering Gallery Mode Carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing. , 2009, Optics express.

[58]  Lan Yang,et al.  Observation and characterization of mode splitting in microsphere resonators in aquatic environment , 2011, 1103.2398.

[59]  Vladimir S. Ilchenko,et al.  Quality-factor and nonlinear properties of optical Whispering-Gallery modes , 1989 .

[60]  Ş. Özdemir,et al.  Optothermal spectroscopy of whispering gallery microresonators , 2011 .

[61]  K. Vahala,et al.  Modal coupling in traveling-wave resonators. , 2002, Optics letters.

[62]  K. Vahala,et al.  High sensitivity nanoparticle detection using optical microcavities , 2011, Proceedings of the National Academy of Sciences.

[63]  G. S. Murugan,et al.  Optical Propulsion of Individual and Clustered Microspheres along Sub-Micron Optical Wires , 2008 .

[64]  Lan Yang,et al.  Estimation of Purcell factor from mode-splitting spectra in an optical microcavity , 2011, 1103.2346.

[65]  K. Vahala,et al.  Dynamical thermal behavior and thermal self-stability of microcavities , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[66]  P. Sheehan,et al.  Detection limits for nanoscale biosensors. , 2005, Nano letters.

[67]  K. Vahala Optical microcavities , 2003, Nature.