Development and comparison of new hybrid motion tracking for bronchoscopic navigation

This paper presents a new hybrid camera motion tracking method for bronchoscopic navigation combining SIFT, epipolar geometry analysis, Kalman filtering, and image registration. In a thorough evaluation, we compare it to state-of-the-art tracking methods. Our hybrid algorithm for predicting bronchoscope motion uses SIFT features and epipolar constraints to obtain an estimate for inter-frame pose displacements and Kalman filtering to find an estimate for the magnitude of the motion. We then execute bronchoscope tracking by performing image registration initialized by these estimates. This procedure registers the actual bronchoscopic video and the virtual camera images generated from 3D chest CT data taken prior to bronchoscopic examination for continuous bronchoscopic navigation. A comparative assessment of our new method and the state-of-the-art methods is performed on actual patient data and phantom data. Experimental results from both datasets demonstrate a significant performance boost of navigation using our new method. Our hybrid method is a promising means for bronchoscope tracking, and outperforms other methods based solely on Kalman filtering or image features and image registration.

[1]  Changchang Wu,et al.  SiftGPU : A GPU Implementation of Scale Invariant Feature Transform (SIFT) , 2007 .

[2]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[3]  Daisuke Deguchi,et al.  Selective image similarity measure for bronchoscope tracking based on image registration , 2009, Medical Image Anal..

[4]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[5]  Daisuke Deguchi,et al.  Branch identification method for CT-guided bronchoscopy based on eigenspace image matching between real and virtual bronchoscopic images , 2006, SPIE Medical Imaging.

[6]  A. Ernst,et al.  Real-time electromagnetic navigation bronchoscopy to peripheral lung lesions using overlaid CT images: the first human study. , 2006, Chest.

[7]  Frank Vanden Berghen,et al.  CONDOR, a new parallel, constrained extension of Powell's UOBYQA algorithm: experimental results and comparison with the DFO algorithm , 2005 .

[8]  K. Cleary,et al.  Image-guided interventions : technology and applications , 2008 .

[9]  William E. Higgins,et al.  Computer-based system for the virtual-endoscopic guidance of bronchoscopy , 2007, Comput. Vis. Image Underst..

[10]  Guang-Zhong Yang,et al.  Patient-specific bronchoscopy visualization through BRDF estimation and disocclusion correction , 2006, IEEE Transactions on Medical Imaging.

[11]  Daisuke Deguchi,et al.  Fast and Accurate Bronchoscope Tracking Using Image Registration and Motion Prediction , 2004, MICCAI.

[12]  Janne Heikkilä,et al.  A four-step camera calibration procedure with implicit image correction , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  D. Hill,et al.  Medical image registration , 2001, Physics in medicine and biology.

[14]  J. M. M. Montiel,et al.  EKF Monocular SLAM 3 D Modeling , Measuring and Augmented Reality from Endoscope Image Sequences , 2009 .

[15]  G. Marchal,et al.  Multi-modal volume registration by maximization of mutual information , 1997 .

[16]  Jun Sugiyama,et al.  Tracking of a bronchoscope using epipolar geometry analysis and intensity-based image registration of real and virtual endoscopic images , 2002, Medical Image Anal..

[17]  William E. Higgins,et al.  Technique for registering 3D virtual CT images to endoscopic video , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[18]  Kensaku Mori,et al.  Fast software-based volume rendering using multimedia instructions on PC platforms and its application to virtual endoscopy , 2003, SPIE Medical Imaging.

[19]  Jürgen Weese,et al.  A comparison of similarity measures for use in 2-D-3-D medical image registration , 1998, IEEE Transactions on Medical Imaging.

[20]  Guang-Zhong Yang,et al.  Nonrigid 2-D/3-D Registration for Patient Specific Bronchoscopy Simulation With Statistical Shape Modeling: Phantom Validation , 2006, IEEE Transactions on Medical Imaging.

[21]  K P Wang,et al.  Three-dimensional CT-guided bronchoscopy with a real-time electromagnetic position sensor: a comparison of two image registration methods. , 2000, Chest.

[22]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[24]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[25]  William E. Higgins,et al.  Combined video tracking and image-video registration for continuous bronchoscopic guidance , 2008, International Journal of Computer Assisted Radiology and Surgery.

[26]  Thomas Martin Deserno,et al.  Bildverarbeitung für die Medizin: Grundlagen, Modelle, Methoden, Anwendungen , 1997, Bildverarbeitung für die Medizin.

[27]  Nassir Navab,et al.  Magneto-Optical Tracking of Flexible Laparoscopic Ultrasound: Model-Based Online Detection and Correction of Magnetic Tracking Errors , 2009, IEEE Transactions on Medical Imaging.

[28]  Philippe C. Cattin,et al.  Fully Automatic Endoscope Calibration for Intraoperative Use , 2006, Bildverarbeitung für die Medizin.

[29]  T. Gildea,et al.  Electromagnetic navigation diagnostic bronchoscopy: a prospective study. , 2006, American journal of respiratory and critical care medicine.

[30]  Greg Welch,et al.  SCAAT: incremental tracking with incomplete information , 1997, SIGGRAPH.

[31]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Fani Deligianni,et al.  Predictive Camera Tracking for Bronchoscope Simulation with CONDensation , 2005, MICCAI.

[33]  Daisuke Deguchi,et al.  A method for accelerating bronchoscope tracking based on image registration by using GPU , 2009, Medical Imaging.

[34]  Mark Schneider,et al.  Development and testing of a new magnetic-tracking device for image guidance , 2007, SPIE Medical Imaging.

[35]  Alfred M. Bruckstein,et al.  Analyzing and Synthesizing Images by Evolving Curves with the Osher-Sethian Method , 1997, International Journal of Computer Vision.

[36]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Ivan Bricault,et al.  Registration of real and CT-derived virtual bronchoscopic images to assist transbronchial biopsy , 1998, IEEE Transactions on Medical Imaging.

[38]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[39]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[40]  Greg Welch,et al.  An Introduction to Kalman Filter , 1995, SIGGRAPH 2001.

[41]  A. Ernst,et al.  Bronchoscopic Biopsy of Peripheral Lung Lesions Under Electromagnetic Guidance , 2005 .

[42]  Volodymyr V. Kindratenko,et al.  A survey of electromagnetic position tracker calibration techniques , 2005, Virtual Reality.

[43]  William E. Higgins,et al.  Real-time CT-video registration for continuous endoscopic guidance , 2006, SPIE Medical Imaging.

[44]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[45]  Daisuke Deguchi,et al.  Hybrid Bronchoscope Tracking Using a Magnetic Tracking Sensor and Image Registration , 2005, MICCAI.