Discovering the dynamic behavior of unknown systems using fuzzy logic

To know the dynamic behavior of a system it is convenient to have a good dynamic model of it. However, in many cases it is not possible either because of its complexity or because of the lack of knowledge of the laws involved in its operation. In these cases, obtaining models from input–output data is shown as a highly effective technique. Specifically, intelligent modeling techniques have become important in recent years in this field. Among these techniques, fuzzy logic is especially interesting because it allows to incorporate to the model the knowledge that is possessed of the system, besides offering a more interpretable model than other techniques. A fuzzy model is, formally speaking, a mathematical model. Therefore, this model can be used to analyze the original system using known systems analysis techniques. In this paper a methodology for extract information from unknown systems using fuzzy logic is presented. More precisely, it is presented the exact linearization of a Takagi–Sugeno fuzzy model with no restrictions in use or distribution of its membership functions, as well as obtaining its equilibrium states, the study of its local behavior and the search for periodic orbits by the application of Poincaré.

[1]  László T. Kóczy,et al.  Size reduction by interpolation in fuzzy rule bases , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[2]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[3]  L. Wang,et al.  Fuzzy systems are universal approximators , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[4]  Basil Mohammed Al-Hadithi,et al.  Suboptimal Recursive Methodology for Takagi-Sugeno Fuzzy Models Identification , 2014 .

[5]  José Manuel Andújar Márquez,et al.  A new methodology to improve interpretability in neuro-fuzzy TSK models , 2010, Appl. Soft Comput..

[6]  Basil Mohammed Al-Hadithi,et al.  New Concepts for the Estimation of Takagi-Sugeno Model Based on Extended Kalman Filter , 2014 .

[7]  Shao-Yuan Li,et al.  On-Line Constrained Predictive Control Algorithm using Multi-Objective Fuzzy-Optimization and a Case Study , 2003, Fuzzy Optim. Decis. Mak..

[8]  Alfonso García-Cerezo,et al.  Fuzzy modeling of a thermal solar plant , 2002, Int. J. Intell. Syst..

[9]  José Manuel Andújar,et al.  A methodology to design stable nonlinear fuzzy control systems , 2005 .

[10]  Luis Alejandro Mora,et al.  Un Nuevo Método de Identificación Basado en la Respuesta Escalón en Lazo Abierto de Sistemas Sobre-amortiguados , 2017 .

[11]  José Manuel Andújar Márquez,et al.  A general methodology for online TS fuzzy modeling by the extended Kalman filter , 2014, Appl. Soft Comput..

[12]  Luis T. Aguilar,et al.  Diseño de un Controlador Difuso mediante la Síntesis Difusa de Lyapunov para la Estabilización de un Péndulo de Rueda Inercial , 2017 .

[13]  Hung T. Nguyen,et al.  Fuzzy systems are universal approximators for a smooth function and its derivatives , 2000 .

[14]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  José Manuel Andújar Márquez,et al.  Multivariable fuzzy control applied to the physical-chemical treatment facility of a Cellulose factory , 2005, Fuzzy Sets Syst..

[16]  F.H.F. Leung,et al.  Stability design of TS model based fuzzy systems , 1997, Proceedings of 6th International Fuzzy Systems Conference.

[17]  Yoshiki Uchikawa,et al.  On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm , 1992, IEEE Trans. Neural Networks.

[18]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[19]  Guo Yu,et al.  Variable Fuzzy Sets and its Application in Comprehensive Risk Evaluation for Flood-control Engineering System , 2006 .

[20]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[21]  José Manuel Andújar Márquez,et al.  A General and Formal Methodology to Design Stable Nonlinear Fuzzy Control Systems , 2009, IEEE Transactions on Fuzzy Systems.

[22]  R. Abraham,et al.  Dynamics--the geometry of behavior , 1983 .

[23]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[24]  Javier Gonzalo González Fontanet,et al.  Alternativas de control para un Péndulo de Furuta , 2016 .

[25]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[26]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control , 1994 .

[27]  Hyunseok Shin,et al.  Fuzzy Partial State Feedback Control of Discrete Nonlinear Systems with Unknown Time-Delay , 2004, Fuzzy Optim. Decis. Mak..

[28]  J. A. Grande,et al.  Fuzzy Modeling of the Spatial Evolution of the Chemistry in the Tinto River (SW Spain) , 2010 .

[29]  José Manuel Andújar Márquez,et al.  Stability analysis and synthesis of multivariable fuzzy systems using interval arithmetic , 2004, Fuzzy Sets Syst..

[30]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[31]  Rodolfo E. Haber,et al.  Hybrid Incremental Modeling Based on Least Squares and Fuzzy $K$-NN for Monitoring Tool Wear in Turning Processes , 2012, IEEE Transactions on Industrial Informatics.

[32]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.