Singularity of eigenfunctions at the junction of shrinking tubes, Part II☆

In continuation with the paper arXiv:1202.4414, we investigate the asymptotic behavior of weighted eigenfunctions in two half-spaces connected by a thin tube. We provide several improvements about some convergences stated in arXiv:1202.4414; most of all, we provide the exact asymptotic behavior of the implicit normalization for solutions given in arXiv:1202.4414 and thus describe the (N-1)-order singularity developed at a junction of the tube (where N is the space dimension).

[1]  Jeffrey Rauch,et al.  Potential and scattering theory on wildly perturbed domains , 1975 .

[2]  I. Babuska,et al.  Continuous dependence of eigenvalues on the domain , 1965 .

[3]  Rolf Dieter Grigorieff Diskret kompakte Einbettungen in Sobolewschen Räumen , 1972 .

[4]  J. M. Arrieta Domain Dependence of Elliptic Operators in Divergence Form , 1997 .

[5]  Justin L. Taylor The Dirichlet Eigenvalue Problem for Elliptic Systems on Domains with Thin Tubes , 2010 .

[6]  Daniel Daners,et al.  Dirichlet problems on varying domains , 2003 .

[7]  S. Terracini,et al.  Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential , 2008, 0809.5002.

[8]  D. Bucur Characterization of the shape stability for nonlinear elliptic problems , 2006 .

[9]  Peter Kuchment Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs , 2005 .

[10]  Claudio Cacciapuoti,et al.  Graph-like models for thin waveguides with Robin boundary conditions , 2008, Asymptot. Anal..

[11]  E. N. Dancer,et al.  Domain Perturbation for Elliptic Equations Subject to Robin Boundary Conditions , 1997 .

[12]  W. Arendt,et al.  Uniform convergence for elliptic problems on varying domains , 2007 .

[13]  C. Anné Fonctions propres sur des variétés avec des anses fines, application à la multiplicité , 1989 .

[14]  Friedrich Stummel,et al.  Diskrete Konvergenz linearer Operatoren. I , 1970 .

[15]  F. Almgren $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two , 1983 .

[16]  Lower bounds on the interaction between cavities connected by a thin tube , 1994 .

[17]  S. Terracini,et al.  On the behavior at collisions of solutions to Schr , 2010, 1004.3949.

[18]  S. Terracini,et al.  A Note on Local Asymptotics of Solutions to Singular Elliptic Equations via Monotonicity Methods , 2010, 1007.4434.

[19]  Justin L. Taylor Convergence of Dirichlet Eigenvalues for Elliptic Systems on Perturbed Domains , 2010, 1010.2149.

[20]  Anna Maria Micheletti Metrica per famiglie di domini limitati e proprietà generiche degli autovalori , 1972 .

[21]  P. Kuchment Quantum graphs , 2004 .

[22]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[23]  E. N. Dancer The effect of domain shape on the number of positive solutions of certain nonlinear equations, II , 1990 .

[24]  F. Lin,et al.  Monotonicity properties of variational integrals, ap weights and unique continuation , 1986 .

[25]  Singularity of eigenfunctions at the junction of shrinking tubes, Part II☆ , 2013 .

[26]  S. Terracini,et al.  Positive harmonic functions in union of chambers , 2012, 1210.1070.

[27]  David Krejcirik,et al.  Geometric Versus Spectral Convergence for the Neumann Laplacian under Exterior Perturbations of the Domain , 2009, 0901.4726.