Similarity Mapplet: Interactive Visualization of the Directory of Useful Decoys and ChEMBL in High Dimensional Chemical Spaces

An Internet portal accessible at www.gdb.unibe.ch has been set up to automatically generate color-coded similarity maps of the ChEMBL database in relation to up to two sets of active compounds taken from the enhanced Directory of Useful Decoys (eDUD), a random set of molecules, or up to two sets of user-defined reference molecules. These maps visualize the relationships between the selected compounds and ChEMBL in six different high dimensional chemical spaces, namely MQN (42-D molecular quantum numbers), SMIfp (34-D SMILES fingerprint), APfp (20-D shape fingerprint), Xfp (55-D pharmacophore fingerprint), Sfp (1024-bit substructure fingerprint), and ECfp4 (1024-bit extended connectivity fingerprint). The maps are supplied in form of Java based desktop applications called "similarity mapplets" allowing interactive content browsing and linked to a "Multifingerprint Browser for ChEMBL" (also accessible directly at www.gdb.unibe.ch ) to perform nearest neighbor searches. One can obtain six similarity mapplets of ChEMBL relative to random reference compounds, 606 similarity mapplets relative to single eDUD active sets, 30,300 similarity mapplets relative to pairs of eDUD active sets, and any number of similarity mapplets relative to user-defined reference sets to help visualize the structural diversity of compound series in drug optimization projects and their relationship to other known bioactive compounds.

[1]  Michael M. Mysinger,et al.  Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking , 2012, Journal of medicinal chemistry.

[2]  Sean Ekins,et al.  Computational mapping tools for drug discovery. , 2009, Drug discovery today.

[3]  Yoshimasa Takahashi,et al.  MolSpace: a computer desktop tool for visualization of massive molecular data. , 2003, Journal of molecular graphics & modelling.

[4]  Dragos Horvath,et al.  Chemical Data Visualization and Analysis with Incremental Generative Topographic Mapping: Big Data Challenge , 2015, J. Chem. Inf. Model..

[5]  R Benigni,et al.  Molecular similarity matrices and quantitative structure-activity relationships: a case study with methodological implications. , 1995, Journal of medicinal chemistry.

[6]  Daniel Svozil,et al.  Molpher: a software framework for systematic chemical space exploration , 2014, Journal of Cheminformatics.

[7]  Tudor I. Oprea,et al.  Chemography: the Art of Navigating in Chemical Space , 2000 .

[8]  José L. Medina-Franco,et al.  Visualization of Molecular Fingerprints , 2011, J. Chem. Inf. Model..

[9]  Gisbert Schneider,et al.  Multidimensional de novo design reveals 5-HT2B receptor-selective ligands. , 2015, Angewandte Chemie.

[10]  Vincent Le Guilloux,et al.  Visual Characterization and Diversity Quantification of Chemical Libraries: 1. Creation of Delimited Reference Chemical Subspaces , 2011, J. Chem. Inf. Model..

[11]  J. Reymond,et al.  Exploring chemical space for drug discovery using the chemical universe database. , 2012, ACS chemical neuroscience.

[12]  Yoo Jakyung,et al.  Chemoinformatic Approaches for Inhibitors of DNA Methyltransferases: Comprehensive Characterization of Screening Libraries , 2011 .

[13]  Clemencia Pinilla,et al.  A Similarity‐based Data‐fusion Approach to the Visual Characterization and Comparison of Compound Databases , 2007, Chemical biology & drug design.

[14]  J. Reymond The chemical space project. , 2015, Accounts of chemical research.

[15]  Stefan Wetzel,et al.  Charting, navigating, and populating natural product chemical space for drug discovery. , 2012, Journal of medicinal chemistry.

[16]  K. M. Smith,et al.  Novel software tools for chemical diversity , 1998 .

[17]  Jean-Louis Reymond,et al.  Visualisation and subsets of the chemical universe database GDB-13 for virtual screening , 2011, J. Comput. Aided Mol. Des..

[18]  Hans-Joachim Böhm,et al.  A guide to drug discovery: Hit and lead generation: beyond high-throughput screening , 2003, Nature Reviews Drug Discovery.

[19]  Stephan Kopp,et al.  Similarity based SAR (SIBAR) as tool for early ADME profiling , 2002, J. Comput. Aided Mol. Des..

[20]  Peter Ertl,et al.  The Molecule Cloud - compact visualization of large collections of molecules , 2012, Journal of Cheminformatics.

[21]  Petra Schneider,et al.  Multi-objective molecular de novo design by adaptive fragment prioritization. , 2014, Angewandte Chemie.

[22]  Hong-Yu Zhang,et al.  Exploring the Biologically Relevant Chemical Space for Drug Discovery , 2013, J. Chem. Inf. Model..

[23]  Tudor I. Oprea,et al.  Novel chemical space exploration via natural products. , 2009, Journal of medicinal chemistry.

[24]  David W Ritchie,et al.  Identifying and characterizing promiscuous targets: Implications for virtual screening , 2012, Expert opinion on drug discovery.

[25]  George M Garrity,et al.  Exploring prokaryotic taxonomy. , 2004, International journal of systematic and evolutionary microbiology.

[26]  Petra Schneider,et al.  Chemography of Natural Product Space , 2015, Planta Medica.

[27]  José L. Medina-Franco,et al.  Characterization of Activity Landscapes Using 2D and 3D Similarity Methods: Consensus Activity Cliffs , 2009, J. Chem. Inf. Model..

[28]  J. Bajorath,et al.  Polypharmacology: challenges and opportunities in drug discovery. , 2014, Journal of medicinal chemistry.

[29]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[30]  Veerabahu Shanmugasundaram,et al.  Molecular similarity measures. , 2011, Methods in molecular biology.

[31]  Stefan Kramer,et al.  CheS-Mapper - Chemical Space Mapping and Visualization in 3D , 2012, Journal of Cheminformatics.

[32]  Jean-Louis Reymond,et al.  Expanding the fragrance chemical space for virtual screening , 2014, Journal of Cheminformatics.

[33]  Rajarshi Guha,et al.  Chemoinformatic Analysis of Combinatorial Libraries, Drugs, Natural Products, and Molecular Libraries Small Molecule Repository , 2009, J. Chem. Inf. Model..

[34]  Gerald M. Maggiora,et al.  Molecular Basis SetsA General Similarity-Based Approach for Representing Chemical Spaces , 2007, J. Chem. Inf. Model..

[35]  Lorenz C. Blum,et al.  Chemical space as a source for new drugs , 2010 .

[36]  Jürgen Bajorath,et al.  Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. , 2007, Drug discovery today.

[37]  Jean-Louis Reymond,et al.  A multi-fingerprint browser for the ZINC database , 2014, Nucleic Acids Res..

[38]  Wolfgang Guba,et al.  Neighborhood-preserving visualization of adaptive structure-activity landscapes: application to drug discovery. , 2011, Angewandte Chemie.

[39]  Jean-Louis Reymond,et al.  Visualization and Virtual Screening of the Chemical Universe Database GDB-17 , 2013, J. Chem. Inf. Model..

[40]  Daniela Digles,et al.  Self‐Organizing Maps for In Silico Screening and Data Visualization , 2011, Molecular informatics.

[41]  Maria F. Sassano,et al.  Automated design of ligands to polypharmacological profiles , 2012, Nature.

[42]  H. Kubinyi,et al.  Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. , 1998, Journal of medicinal chemistry.

[43]  Thomas Sander,et al.  DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis , 2015, J. Chem. Inf. Model..

[44]  Jean-Louis Reymond,et al.  A Searchable Map of PubChem , 2010, J. Chem. Inf. Model..

[45]  Lorenz C. Blum,et al.  Classification of Organic Molecules by Molecular Quantum Numbers , 2009, ChemMedChem.

[46]  Thomas R. Hagadone,et al.  Molecular substructure similarity searching: efficient retrieval in two-dimensional structure databases , 1992, J. Chem. Inf. Comput. Sci..

[47]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[48]  David DeCaprio,et al.  Cheminformatics approaches to analyze diversity in compound screening libraries. , 2010, Current opinion in chemical biology.

[49]  Austin B. Yongye,et al.  Multitarget Structure-Activity Relationships Characterized by Activity-Difference Maps and Consensus Similarity Measure , 2011, J. Chem. Inf. Model..

[50]  Paul A Clemons,et al.  Mapping chemical space using molecular descriptors and chemical genetics: deacetylase inhibitors. , 2004, Combinatorial chemistry & high throughput screening.

[51]  Jean-Louis Reymond,et al.  SMIfp (SMILES fingerprint) Chemical Space for Virtual Screening and Visualization of Large Databases of Organic Molecules , 2013, J. Chem. Inf. Model..

[52]  Hélène Decornez,et al.  Early phase drug discovery: cheminformatics and computational techniques in identifying lead series. , 2012, Bioorganic & medicinal chemistry.

[53]  Jean-Louis Reymond,et al.  MQN-Mapplet: Visualization of Chemical Space with Interactive Maps of DrugBank, ChEMBL, PubChem, GDB-11, and GDB-13 , 2013, J. Chem. Inf. Model..

[54]  Xian Jin,et al.  Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints , 2015, Journal of Cheminformatics.

[55]  José L. Medina-Franco,et al.  Visualization of the Chemical Space in Drug Discovery , 2008 .

[56]  Jean-Louis Reymond,et al.  Cluster analysis of the DrugBank chemical space using molecular quantum numbers. , 2012, Bioorganic & medicinal chemistry.

[57]  Eric Martin,et al.  Euclidean chemical spaces from molecular fingerprints: Hamming distance and Hempel’s ravens , 2015, Journal of Computer-Aided Molecular Design.

[58]  José L Medina-Franco,et al.  Progress in the Visualization and Mining of Chemical and Target Spaces , 2013, Molecular informatics.

[59]  Jean-Louis Reymond,et al.  Atom Pair 2D-Fingerprints Perceive 3D-Molecular Shape and Pharmacophores for Very Fast Virtual Screening of ZINC and GDB-17 , 2014, J. Chem. Inf. Model..

[60]  Hanna Geppert,et al.  Current Trends in Ligand-Based Virtual Screening: Molecular Representations, Data Mining Methods, New Application Areas, and Performance Evaluation , 2010, J. Chem. Inf. Model..

[61]  Maciej Haranczyk,et al.  Comparison of Nonbinary Similarity Coefficients for Similarity Searching, Clustering and Compound Selection , 2009, J. Chem. Inf. Model..