A Singular Field Method for Maxwell's Equations: Numerical Aspects for 2D Magnetostatics

The present paper deals with the solution of Maxwell-type problems by means of nodal H1-conforming finite elements. In a nonconvex piecewise regular domain surrounded by a perfect conductor, such a discretization cannot in general approximate the singular behavior of the electromagnetic field near "reentrant" corners or edges. The singular field method consists of adding to the finite element discretization space some particular fields which take into account the singular behavior. The latter are deduced from the singular functions associated with the scalar Laplace operator. The theoretical justification of this approach as well as the analysis of the convergence of the approximation are presented for a very simple model problem arising from magnetostatics in a translation invariant setting, but the study can be easily extended to numerous Maxwell-type problems. The numerical implementation of both variants is studied for a domain containing a single reentrant corner.

[1]  M. Costabel A coercive bilinear form for Maxwell's equations , 1991 .

[2]  Franck Assous,et al.  Theoretical tools to solve the axisymmetric Maxwell equations , 2002 .

[3]  Christophe Hazard,et al.  On the solution of time-harmonic scattering problems for Maxwell's equations , 1996 .

[4]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[5]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[6]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[7]  M. Birman,et al.  L2-Theory of the Maxwell operator in arbitrary domains , 1987 .

[8]  M. Costabel,et al.  Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .

[9]  Patrick Ciarlet,et al.  Les équations de Maxwell dans un polyèdre: un résultat de densité , 1998 .

[10]  Christophe Hazard,et al.  A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains , 1999, SIAM J. Appl. Math..

[11]  M. A. Moussaoui,et al.  Sur l'approximation des solutions du probleme de Dirichlet dans un ouvert avec coins , 1985 .

[12]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[13]  Christophe Hazard,et al.  Numerical simulation of corner singularities: a paradox in Maxwell-like problems , 2002 .

[14]  P. Werner,et al.  A local compactness theorem for Maxwell's equations , 1980 .

[15]  Franck Assous,et al.  Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method , 2003 .

[16]  Martin Costabel,et al.  Un rsultat de densit pour les quations de Maxwell rgularises dans un domaine lipschitzien , 1998 .

[17]  Pierre Degond,et al.  On a finite-element method for solving the three-dimensional Maxwell equations , 1993 .

[18]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[19]  Alain Bossavit,et al.  On the Lorenz gauge , 1999 .