Intracavity doubling of CW diode-pumped Nd:YAG lasers with KTP

Intracavity-doubled lasers exhibit amplitude fluctuations driven by a combination of two nonlinearities: sum generation and spatial hole burning. Optimizing the cavity polarizations to minimize sum generation does not consistently eliminate the oscillations. Elimination of spatial hole burning prevents oscillations over a much larger range of operating conditions. The system is still bistable however, and can suffer abrupt changes in power due to mode hops. This can be eliminated with an etalon or other wavelength selective element. >

[1]  Alex Abramovici,et al.  Minimal Nd:YAP laser configuration with single frequency output , 1987 .

[2]  Effect of competing laser transitions on intracavity optical second-harmonic generation , 1971 .

[3]  Herman Vanherzeele,et al.  Potassium titanyl phosphate: properties and new applications , 1989 .

[4]  D. Sipes,et al.  Highly efficient neodymium:yttrium aluminum garnet laser end pumped by a semiconductor laser array , 1985 .

[5]  K. Wiesenfeld,et al.  Elimination of chaos in an intracavity-doubled Nd:YAG laser. , 1990, Optics letters.

[6]  Y. Liu,et al.  High-average-power intracavity second-harmonic generation using KTiOPO(4) in an acousto-optically Q-switched Nd:YAG laser oscillator at 5 kHz. , 1984, Optics letters.

[7]  James,et al.  Intermittency and chaos in intracavity doubled lasers. II. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[8]  Thomas M. Baer,et al.  Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers , 1986 .

[9]  S Kubota,et al.  Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers. , 1988, Optics letters.

[10]  H. G. Danielmeyer Stabilized efficient single-frequency Nd:YAG laser , 1970 .

[11]  Fabien Bretenaker,et al.  Laser eigenstates in the framework of a spatially generalized Jones matrix formalism , 1991 .

[12]  Y. S. Liu,et al.  KTP as a harmonic generator for Nd:YAG lasers , 1985 .

[13]  J. Geusic,et al.  CONTINUOUS 0.532‐μ SOLID‐STATE SOURCE USING Ba2NaNb5O15 , 1968 .

[14]  J. E. Peterson,et al.  Efficient frequency-doubled single-frequency Nd:YAG laser , 1973 .

[15]  Anthony E. Siegman,et al.  A “Twisted-Mode” Technique for Obtaining Axially Uniform Energy Density in a Laser Cavity , 1965 .