Optical properties of Si clusters and Si nanocrystallites in high-temperature annealed SiOx films

Structure, optical absorption and photoluminescence (PL) properties of SiOx films subjected to thermal annealing at 750–1100 °C are investigated. Si crystallites with a few nanometers in size are observed in the SiO1.3 and SiO1.65 films annealed at 1100 °C. Threshold energies in optical absorption of the Si nanocrystallites are higher than that for bulk Si, suggesting a contribution from quantum confinement effects. The PL spectrum shows a remarkable increase in intensity after annealing at temperatures above 1000 °C. This PL behavior is closely related to the formation of Si nanocrystallites by the annealing. The PL peak energy of the annealed films shifts to higher energy with decreasing crystallite size but does not follow the blueshift for the absorption threshold energy. These results suggest that a localized state contributes to the PL mechanism. The SiO1.8 film annealed at 1100 °C, which contains no Si crystallites, exhibits an intense PL similar to the annealed SiO1.3 and SiO1.65 films. It is impl...

[1]  Shuyi Ma,et al.  Photoluminescence mechanism for blue-light-emitting porous silicon , 1997 .

[2]  Keiichi Yamamoto,et al.  Size-dependent near-infrared photoluminescence spectra of Si nanocrystals embedded in SiO2 matrices , 1997 .

[3]  S. Ossicini,et al.  Optical emission from small Si particles , 1997 .

[4]  Anthony J. Kenyon,et al.  The origin of photoluminescence from thin films of silicon-rich silica , 1996 .

[5]  Kanemitsu Photoluminescence spectrum and dynamics in oxidized silicon nanocrystals: A nanoscopic disorder system. , 1996, Physical review. B, Condensed matter.

[6]  Allan,et al.  Nature of luminescent surface states of semiconductor nanocrystallites. , 1996, Physical review letters.

[7]  Yuka Yamada,et al.  Nanometer‐sized silicon crystallites prepared by excimer laser ablation in constant pressure inert gas , 1996 .

[8]  J. L. Smith,et al.  SiOx luminescence from light‐emitting porous silicon: Support for the quantum confinement/luminescence center model , 1996 .

[9]  Takeda,et al.  Excitonic exchange splitting and Stokes shift in Si nanocrystals and Si clusters. , 1996, Physical review. B, Condensed matter.

[10]  S. Sakai,et al.  A Digital Method of Gas Laser Etching for Oxide Superconductors , 1996 .

[11]  Friedman,et al.  Size, shape, and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si. , 1995, Physical review. B, Condensed matter.

[12]  Hill Na,et al.  Size dependence of excitons in silicon nanocrystals. , 1995 .

[13]  Atilla Aydinli,et al.  Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition , 1995 .

[14]  Two-band structure in photoluminescence spectra from porous silicon and its dependence on excitation wavelength , 1995 .

[15]  G. Ghislotti,et al.  Room‐temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers , 1995 .

[16]  Tsutomu Shimizu-Iwayama,et al.  Visible photoluminescence in Si+‐implanted thermal oxide films on crystalline Si , 1994 .

[17]  Kazuo Saitoh,et al.  Visible photoluminescence in Si+‐implanted silica glass , 1994 .

[18]  Hybertsen,et al.  Absorption and emission of light in nanoscale silicon structures. , 1994, Physical review letters.

[19]  Sawada,et al.  Mechanisms of visible photoluminescence in porous silicon. , 1994, Physical review. B, Condensed matter.

[20]  Andreoni,et al.  Structure of nanoscale silicon clusters. , 1994, Physical review letters.

[21]  P. F. Szajowski,et al.  Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals , 1993, Science.

[22]  Y. Kanzawa,et al.  Photoluminescence of Si-Rich SiO2 Films: Si Clusters as Luminescent Centers , 1993 .

[23]  Nakajima,et al.  Observation of phonon structures in porous Si luminescence. , 1993, Physical review letters.

[24]  G. Qin,et al.  Mechanism of the visible luminescence in porous silicon , 1993 .

[25]  Weber,et al.  Siloxene: Chemical quantum confinement due to oxygen in a silicon matrix. , 1992, Physical review letters.

[26]  A. Bard,et al.  Chemiluminescence of Anodized and Etched Silicon: Evidence for a Luminescent Siloxene-Like Layer on Porous Silicon , 1992, Science.

[27]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[28]  Bell,et al.  Photoemission study of SiOx (0 <= x <= 2) alloys. , 1988, Physical review. B, Condensed matter.

[29]  Philippe M. Fauchet,et al.  The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .

[30]  W. Ching Theory of amorphous SiO2andSiOx. III. Electronic structures ofSiOx , 1982 .

[31]  Zafar Iqbal,et al.  A thermodynamic criterion of the crystalline-to-amorphous transition in silicon , 1982 .

[32]  R. Carius,et al.  Photoluminescence in the amorphous system SiOx , 1981 .

[33]  M. Lannoo,et al.  A cluster plus effective medium tight-binding study of SiOx systems , 1978 .

[34]  L. M. Roth,et al.  Calculation of the Optical Properties of Amorphous SiOx Materials , 1971 .

[35]  R. Newman,et al.  Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77°K and 300°K , 1955 .