Optimal design of smart carriage arm in magnetic disk drive for vibration suppression

In hard disk drives, vibration suppression is very important to boost the performance of information-processing equipment. It has been expected that technology of smart structure will contribute to the development of small and light-weight mechatronics devices with the required performance. The smart structure is composed of the piezoelectric film sensor and actuator in order to reduce the structural vibration. The placement of the piezoelectric actuator and H2 control system are simultaneously optimized based on genetic algorithm to improve the effect on the vibration suppression. It has been verified by some applications with a plate structure and a magnetic disk drive that an enhanced performance for the vibration suppression can be achieved by the proposed optimal design method.