A 0.6V 785-nW Multimodal Sensor Interface IC for Ozone Pollutant Sensing and Correlated Cardiovascular Disease Monitoring

In this article, we present the design and analysis of a 785-nW multimodal sensor interface IC for ozone pollutant sensing and correlated cardiovascular disease monitoring based on electrocardiography (ECG) and photoplethysmography (PPG). The proposed hybrid <inline-formula> <tex-math notation="LaTeX">$dc$ </tex-math></inline-formula> offset current cancellation (DCOC) along with a 4-<inline-formula> <tex-math notation="LaTeX">$\text{M}\Omega $ </tex-math></inline-formula> gain-regulated cascode transimpedance amplifier (RGC-TIA) enable PPG readout power reduction by <inline-formula> <tex-math notation="LaTeX">$37\times $ </tex-math></inline-formula>, compared with the state-of-the-art PPG sensor interfaces. The ozone sensing channel proposes an adaptive architecture to enable low <inline-formula> <tex-math notation="LaTeX">$V_{\text {DD}}$ </tex-math></inline-formula> operation, achieving a <inline-formula> <tex-math notation="LaTeX">$300\times $ </tex-math></inline-formula> power reduction, compared with the state-of-the-art gas sensing readouts. The ozone sensing channel’s performance was also verified using custom resistive metal-oxide sensors for concentrations from 50 to 900 ppb. The sensor interface IC is fabricated in a 65-nm CMOS, integrating a 165-nW voltage-mode ECG channel, a 532-nW current-mode PPG channel, 76-nW resistive-mode ozone channel, and 12.6-nW peripheral circuits, all at 0.6 V. The total system power consumption including the LED and a custom digital readout IC is 10.98–<inline-formula> <tex-math notation="LaTeX">$15.51~\mu \text{W}$ </tex-math></inline-formula>, which is <inline-formula> <tex-math notation="LaTeX">$41\times $ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">$57\times $ </tex-math></inline-formula> less than prior ozone/CVD joint monitoring sensor interface systems.

[1]  Mario Konijnenburg,et al.  22.1 A 769μW Battery-Powered Single-Chip SoC With BLE for Multi-Modal Vital Sign Health Patches , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[2]  Benton H. Calhoun,et al.  An 88.6nW ozone pollutant sensing interface IC with a 159 dB dynamic range , 2020, ISLPED.

[3]  Anantha Chandrakasan,et al.  A 32-$\mu$ W 1.83-kS/s Carbon Nanotube Chemical Sensor System , 2009, IEEE Journal of Solid-State Circuits.

[4]  Chao Xu,et al.  CMOS Baseline Tracking and Cancellation Instrumentation for Nanoparticle-Coated Chemiresistors , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[5]  J. Balmes,et al.  The role of ozone exposure in the epidemiology of asthma. , 1993, Environmental health perspectives.

[6]  J. R. Moorman,et al.  Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. , 2011, American journal of physiology. Heart and circulatory physiology.

[7]  Xiaoyi Mu,et al.  125ppm resolution and 120dB dynamic range nanoparticle chemiresistor array readout circuit , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[8]  Building Blocks of a New ALD E-Nose - A First Step: N-Type and P-Type ALD Sensors , 2018, 2018 IEEE SENSORS.

[9]  Mario Konijnenburg,et al.  A 36 μW 1.1 mm2 Reconfigurable Analog Front-End for Cardiovascular and Respiratory Signals Recording , 2018, IEEE Transactions on Biomedical Circuits and Systems.

[10]  P. Macfarlane,et al.  Recommendations for standardization and specifications in automated electrocardiography: bandwidth and digital signal processing. A report for health professionals by an ad hoc writing group of the Committee on Electrocardiography and Cardiac Electrophysiology of the Council on Clinical Cardiology, , 1990, Circulation.

[11]  Mario Konijnenburg,et al.  A 196μW, Reconfigurable Light-to-Digital Converter with 119dB Dynamic Range, for Wearable PPG/NIRS Sensors , 2019, 2019 Symposium on VLSI Circuits.

[12]  A. Baschirotto,et al.  A 160 dB Equivalent Dynamic Range Auto-Scaling Interface for Resistive Gas Sensors Arrays , 2007, IEEE Journal of Solid-State Circuits.

[13]  Shih-An Yu,et al.  A Portable Micro Gas Chromatography System for Lung Cancer Associated Volatile Organic Compound Detection , 2016, IEEE Journal of Solid-State Circuits.

[14]  Benton H. Calhoun,et al.  A 785nW Multimodal (V/I/R) Sensor Interface IC for Ozone Pollutant Sensing and Correlated Cardiovascular Disease Monitoring , 2020, 2020 IEEE Symposium on VLSI Circuits.

[15]  W. Weng,et al.  Association of Ozone Exposure With Cardiorespiratory Pathophysiologic Mechanisms in Healthy Adults , 2017, JAMA internal medicine.

[16]  Fan Zhang,et al.  A Batteryless 19 $\mu$W MICS/ISM-Band Energy Harvesting Body Sensor Node SoC for ExG Applications , 2013, IEEE Journal of Solid-State Circuits.

[17]  Yong Zhu,et al.  Low-Power Wearable Systems for Continuous Monitoring of Environment and Health for Chronic Respiratory Disease , 2016, IEEE Journal of Biomedical and Health Informatics.

[18]  Benton H. Calhoun,et al.  Application-Driven Model of a PPG Sensing Modality for the Informed Design of Self-Powered, Wearable Healthcare Systems , 2020, ISCAS.

[19]  Hao Gao,et al.  A 0.20 mm2 3 nW Signal Acquisition IC for Miniature Sensor Nodes in 65 nm CMOS , 2016, IEEE J. Solid State Circuits.