Inorganic, Organic, and Perovskite Halides with Nanotechnology for High–Light Yield X- and γ-ray Scintillators

Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high–light yield and fast response can be found in Ce 3 + , Pr 3 + and Nd 3 + lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu 3 + doped SrI 2 . However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000–300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators.

[1]  P. Rodnyi Physical Processes in Inorganic Scintillators , 2020 .

[2]  Landobasa Y. M. Tobing,et al.  Concurrent Inhibition and Redistribution of Spontaneous Emission from All Inorganic Perovskite Photonic Crystals , 2019, ACS Photonics.

[3]  Ayan A. Zhumekenov,et al.  All-inorganic perovskite nanocrystal scintillators , 2018, Nature.

[4]  D. Shin,et al.  High‐Performance Next‐Generation Perovskite Nanocrystal Scintillator for Nondestructive X‐Ray Imaging , 2018, Advanced materials.

[5]  Henk J. Bolink,et al.  Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade , 2018 .

[6]  Hong Wang,et al.  Thermal Quenching and Dose Studies of X-ray Luminescence in Single Crystals of Halide Perovskites , 2018, The Journal of Physical Chemistry C.

[7]  M. D. Birowosuto,et al.  Light–Matter Interaction of Single Quantum Emitters with Dielectric Nanostructures , 2018, Photonics.

[8]  P. Dorenbos,et al.  Needs, Trends, and Advances in Inorganic Scintillators , 2018, IEEE Transactions on Nuclear Science.

[9]  Paul Lecoq,et al.  Enhancing Light Extraction of Inorganic Scintillators Using Photonic Crystals , 2018 .

[10]  Paolo Russo,et al.  Handbook of X-ray Imaging : Physics and Technology , 2017 .

[11]  K. Asai,et al.  Scintillating Organic–Inorganic Layered Perovskite-type Compounds and the Gamma-ray Detection Capabilities , 2017, Scientific Reports.

[12]  Sang Yoon Lee,et al.  Printable organometallic perovskite enables large-area, low-dose X-ray imaging , 2017, Nature.

[13]  Jinsong Huang,et al.  Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy. , 2017, Nature materials.

[14]  S. Ghosh,et al.  Development of scintillator detector for detection of cosmic ray shower , 2017 .

[15]  Thilo Michel,et al.  High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers , 2017, Nature Photonics.

[16]  Jinsong Huang,et al.  Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging , 2017, Nature Photonics.

[17]  G. Bizarri,et al.  Consequences of Ca Codoping in YAlO3 :Ce Single Crystals. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[18]  Hella-Christin Scheer,et al.  Photonic Nanostructures Patterned by Thermal Nanoimprint Directly into Organo‐Metal Halide Perovskites , 2017, Advanced materials.

[19]  Mengxuan Xu,et al.  Modified timing characteristic of a scintillation detection system with photonic crystal structures. , 2017, Optics letters.

[20]  Song Jin,et al.  Single-crystal microplates of two-dimensional organic–inorganic lead halide layered perovskites for optoelectronics , 2017, Nano Research.

[21]  Behrad Gholipour,et al.  Organometallic Perovskite Metasurfaces , 2017, Advanced materials.

[22]  M. D. Birowosuto,et al.  X-ray Scintillation in Lead Halide Perovskite Crystals , 2016, Scientific Reports.

[23]  Ken-Tye Yong,et al.  New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. , 2016, Chemical reviews.

[24]  D. Sahani,et al.  Dual energy CT in practice: Basic principles and applications , 2016, Applied Radiology.

[25]  Padhraic Mulligan,et al.  Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals , 2016, Nature Photonics.

[26]  Paul Lecoq,et al.  Development of new scintillators for medical applications , 2016 .

[27]  P. Williams,et al.  Scintillating Quantum Dots for Imaging X-rays (SQDIX) for Aircraft Inspection , 2016 .

[28]  Joerg Barkhausen,et al.  Digital Breast Tomosynthesis: Technique and Cases , 2015 .

[29]  A. Meijerink,et al.  Multi-photon quantum cutting in Gd2O2S:Tm3+ to enhance the photo-response of solar cells , 2015, Light: Science & Applications.

[30]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[31]  Stephen A. Payne,et al.  Scintillation properties of solution-grown trans-stilbene single crystals , 2015 .

[32]  Shuanghao Wu,et al.  Enhanced light extraction of scintillator using large-area photonic crystal structures fabricated by soft-X-ray interference lithography , 2015 .

[33]  T. Yanagida,et al.  Comparative study of neutron and gamma-ray pulse shape discrimination of anthracene, stilbene, and p-terphenyl , 2015 .

[34]  C. Brabec,et al.  Detection of X-ray photons by solution-processed lead halide perovskites , 2015, Nature Photonics.

[35]  A. Yoshikawa,et al.  Recent R&D Trends in Inorganic Single‐Crystal Scintillator Materials for Radiation Detection , 2015 .

[36]  Christophe Dujardin,et al.  Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect. , 2015, Nanoscale.

[37]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[38]  Paul Lecoq,et al.  Review on photonic crystal coatings for scintillators , 2014 .

[39]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[40]  Shunsuke Kurosawa,et al.  Defect Engineering in Ce-Doped Aluminum Garnet Single Crystal Scintillators , 2014 .

[41]  P. Dorenbos,et al.  33000 photons per MeV from mixed (Lu0.75Y0.25)3Al5O12:Pr scintillator crystals , 2014 .

[42]  V. Cherginets,et al.  Scintillation properties of CsSrX3:Eu2+ (CsSr1−yEuyX3, X = Cl, Br; 0 ≤ y ≤ 0.05) single crystals grown by the Bridgman method , 2014 .

[43]  P. Dorenbos,et al.  The Effect of Self-Absorption on the Scintillation Properties of ${\rm Ce}^{3+}$ Activated ${\rm LaBr}_{3}$ and ${\rm CeBr}_{3}$ , 2014 .

[44]  V. Cherginets,et al.  Scintillation properties of CaBr2 crystals doped with Eu2+ ions , 2013 .

[45]  P. Dorenbos,et al.  Evidence and Consequences of Ce $^{4+}$ in LYSO:Ce,Ca and LYSO:Ce,Mg Single Crystals for Medical Imaging Applications , 2013, IEEE Transactions on Nuclear Science.

[46]  G. Bizarri,et al.  Structure and scintillation of Eu2+-activated BaBrCl and solid solutions in the BaCl2–BaBr2 system , 2013 .

[47]  V. Cherginets,et al.  Crystal growth and scintillation properties of CsCaBr3:Eu2+(CsCa1−xEuxBr3, 0≤x≤0.08) , 2013 .

[48]  P. Bhattacharya,et al.  A New Lanthanide Activator for Iodide Based Scintillators: ${\hbox {Yb}}^{2+}$ , 2013, IEEE Transactions on Nuclear Science.

[49]  I. V. Khodyuk,et al.  Improvement of γ-ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping , 2013 .

[50]  M. Zhuravleva,et al.  New single crystal scintillators: CsCaCl3:Eu and CsCaI3:Eu , 2012 .

[51]  A. Bross Applications for Large Solid Scintillator Detectors in Neutrino and Particle Astrophysics , 2012 .

[52]  G. Bizarri,et al.  Crystal growth and characterization of alkali-earth halide scintillators , 2012 .

[53]  T. Langford,et al.  Characterization of a 6Li-loaded liquid organic scintillator for fast neutron spectrometry and thermal neutron detection. , 2012, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[54]  X. Letartre,et al.  Results of Photonic Crystal Enhanced Light Extraction on Heavy Inorganic Scintillators , 2012, IEEE Transactions on Nuclear Science.

[55]  G. Bizarri,et al.  Scintillation and Optical Properties of ${\rm BaBrI}\!:\!{\rm Eu}^{2+}$ and ${\rm CsBa}_{2}{\rm I}_{5}\!:\!{\rm Eu}^{2+}$ , 2011, IEEE Transactions on Nuclear Science.

[56]  S. Derenzo,et al.  Scintillation properties of CsBa2Br5:Eu2+ , 2011 .

[57]  Rostyslav Boutchko,et al.  New scintillators discovered by high-throughput screening , 2011 .

[58]  W. Lawrence,et al.  CdTe quantum dots and polymer nanocomposites for x-ray scintillation and imaging. , 2011, Applied physics letters.

[59]  Urmila Shirwadkar,et al.  Selected Properties of Cs $_{2}$ LiYCl $_{6}$ , Cs $_{2}$ LiLaCl $_{6}$ , and Cs $_{2}$ LiLaBr $_{6}$ Scintillators , 2011 .

[60]  M. Zhuravleva,et al.  Crystal growth and characterization of CsSr1–xEux I3 high light yield scintillators , 2011 .

[61]  G. Bizarri,et al.  Scintillation properties of Eu2+-activated barium fluoroiodide , 2010, 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC).

[62]  T. Niedermayr,et al.  Scintillators With Potential to Supersede Lanthanum Bromide , 2009, IEEE Transactions on Nuclear Science.

[63]  S. Kerisit,et al.  Computer simulation of the light yield nonlinearity of inorganic scintillators , 2009 .

[64]  M. D. Birowosuto,et al.  Novel γ‐ and X‐ray scintillator research: on the emission wavelength, light yield and time response of Ce3+ doped halide scintillators , 2009 .

[65]  S. Kishimoto,et al.  Subnanosecond time-resolved x-ray measurements using an organic-inorganic perovskite scintillator , 2008 .

[66]  I. V. Khodyuk,et al.  Scintillation properties of a crystal of (C6H5(CH2)2NH3)2PbBr4 , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[67]  P. Dorenbos,et al.  Scintillation Properties of Praseodymium Activated Lu3Al5O12 Single Crystals , 2008 .

[68]  P. Dorenbos,et al.  Scintillation Properties of Praseodymium Activated ${\rm Lu}_{3}{\rm Al}_{5}{\rm O} _{12}$ Single Crystals , 2008, IEEE Transactions on Nuclear Science.

[69]  P. Dorenbos,et al.  Temperature Dependent Scintillation and Luminescence Characteristics of GdI$_{3}$: Ce$^{3+}$ , 2008, IEEE Transactions on Nuclear Science.

[70]  Mathias Prokop,et al.  Digital chest radiography: an update on modern technology, dose containment and control of image quality , 2008, European Radiology.

[71]  Arnold Burger,et al.  Strontium and barium iodide high light yield scintillators , 2008 .

[72]  A. Vedda,et al.  Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics , 2007 .

[73]  T. Niedermayr,et al.  Barium iodide single-crystal scintillator detectors , 2007, SPIE Optical Engineering + Applications.

[74]  S. Kim,et al.  Development of CaMoO(4) crystal scintillators for double beta decay experiment with Mo-100 , 2007 .

[75]  M. D. Birowosuto,et al.  Thermal quenching of Ce3+ emission in PrX3 (X = Cl, Br) by intervalence charge transfer , 2007 .

[76]  Yao Fu,et al.  Preparation and luminescence property of Gd2O2S:Tb X-ray nano-phosphors using the complex precipitation method , 2007 .

[77]  M. D. Birowosuto,et al.  Scintillation and luminescence properties of Ce3+ doped ternary cesium rare‐earth halides , 2007 .

[78]  Muhammad Danang Birowosuto,et al.  Europium-doped barium halide scintillators for x-ray and γ-ray detections , 2007 .

[79]  S. Nishiyama,et al.  Floating zone growth and scintillation characteristics of cerium-doped gadolinium pyrosilicate single crystals , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[80]  M. D. Birowosuto,et al.  Scintillation properties and anomalous Ce3+ emission of Cs2NaREBr6:Ce3+ (RE = La,Y,Lu) , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[81]  A. Vedda,et al.  Development of novel scintillator crystals , 2006 .

[82]  Muhammad Danang Birowosuto,et al.  High-light-output scintillator for photodiode readout: LuI3:Ce3+ , 2006 .

[83]  W. Drozdowski,et al.  Scintillation properties of LuAP and LuYAP crystals activated with Cerium and Molybdenum , 2006 .

[84]  J. H. Hubbell,et al.  Electron-positron pair production by photons : A historical overview , 2006 .

[85]  M. D. Birowosuto,et al.  Optical spectroscopy and luminescence quenching of LuI3:Ce3+LuI3:Ce3+ , 2006 .

[86]  S. Shimizu,et al.  Scintillation Properties of Lu$_0.4$Gd$_1.6$SiO$_5$:Ce (LGSO) Crystal , 2006, IEEE Transactions on Nuclear Science.

[87]  M. Nikl Scintillation detectors for x-rays , 2006 .

[88]  K. Kamada,et al.  Growth and scintillation properties of Pr-doped Lu3Al5O12 crystals , 2006 .

[89]  M. Moszynski,et al.  Characterization of CaWO 4 scintillator at room and liquid nitrogen temperatures , 2005 .

[90]  I. Cunningham,et al.  Segmented crystalline scintillators: an initial investigation of high quantum efficiency detectors for megavoltage x-ray imaging. , 2005, Medical physics.

[91]  M. D. Birowosuto,et al.  Scintillation properties of LuI/sub 3/:Ce/sup 3+/-high light yield scintillators , 2005, IEEE Transactions on Nuclear Science.

[92]  J. Glodo,et al.  Optical and scintillation properties of Cs/sub 2/LiYCl/sub 6/:Ce/sup 3+/ and Cs/sub 2/LiYCl/sub 6/:Pr3/sup +/ crystals , 2005, IEEE Symposium Conference Record Nuclear Science 2004..

[93]  Ulrich Neitzel,et al.  Status and prospects of digital detector technology for CR and DR. , 2005, Radiation protection dosimetry.

[94]  P. Dorenbos,et al.  Luminescence and scintillation properties of the small band gap compound LaI3:Ce3+ , 2005 .

[95]  P. Dorenbos,et al.  Scintillation properties of K2LaX5:Ce3+ (X=Cl, Br, I) , 2005 .

[96]  P. Dorenbos Scintillation mechanisms in Ce3+ doped halide scintillators , 2005 .

[97]  P. Dorenbos,et al.  New thermal neutron scintillators: Cs/sub 2/LiYCl/sub 6/:Ce/sup 3+/ and Cs/sub 2/LiYBr/sub 6/:Ce/sup 3+/ , 2004, IEEE Transactions on Nuclear Science.

[98]  Tim Mulnix,et al.  NEMA NU 2 performance tests for scanners with intrinsic radioactivity. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[99]  A. Meijerink,et al.  Quantum efficiency of europium emission from nanocrystalline powders of Lu2O3:Eu , 2003 .

[100]  Marvin J. Weber,et al.  Inorganic scintillators: today and tomorrow , 2002 .

[101]  K. Asai,et al.  Scintillation properties of (C6H13NH3)2PbI4 : Exciton luminescence of an organic/inorganic multiple quantum well structure compound induced by 2.0 MeV protons , 2002 .

[102]  P. Dorenbos,et al.  Scintillation properties of LaCl3:Ce3+ crystals: fast, efficient and high-energy-resolution scintillators , 2002 .

[103]  P. Dorenbos,et al.  Energy resolution of some new inorganic-scintillator gamma-ray detectors , 2001 .

[104]  P. Dorenbos,et al.  Optical and scintillation properties of pure and Ce3+ doped GdBr3 , 2001 .

[105]  K. Krämer,et al.  Scintillation properties of LaCl/sub 3/:Ce/sup 3+/ crystals: fast, efficient, and high-energy resolution scintillators , 2000 .

[106]  P. Dorenbos,et al.  High-energy-resolution scintillator: Ce3+ activated LaBr3 , 2000 .

[107]  C. Melcher Scintillation crystals for PET. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[108]  Paul Leblans,et al.  SESSION 3 B : Digital Imaging and Computer-Aided Diagnosis A New Needle-Crystailine Computed Radiography Detector , 2009 .

[109]  P. Dorenbos,et al.  Scintillation and luminescence properties of Ce3+ doped K2LaCl5 , 1999 .

[110]  P. Dorenbos,et al.  A novel inorganic scintillator: Lu/sub 2/Si/sub 2/O/sub 7/:Ce/sup 3+/ (LPS) , 1999, 1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference (Cat. No.99CH37019).

[111]  A. Meijerink,et al.  Visible quantum cutting in LiGdF4:Eu3+ through downconversion , 1999, Science.

[112]  Wilfried Blanc,et al.  Optical and scintillation properties of large crystals , 1998 .

[113]  M. Moszynski,et al.  Comparison of YAP and BGO for high-resolution PET detectors , 1998 .

[114]  D. Wolski,et al.  Properties of the YAP : Ce scintillator , 1998 .

[115]  M. Ataç,et al.  Detection of cosmic ray tracks using scintillating fibers and position sensitive multi-anode photomultipliers , 1998 .

[116]  G. Entine,et al.  Structured CsI(Tl) scintillators for X-ray imaging applications , 1997, 1997 IEEE Nuclear Science Symposium Conference Record.

[117]  J. A. Shepherd,et al.  Study of afterglow in x-ray phosphors for use on fast-framing charge-coupled device detectors , 1997 .

[118]  D. Wolski,et al.  Properties of the new LuAP:Ce scintillator , 1997 .

[119]  P. Raby,et al.  New developments in cadmium tungstate , 1994 .

[120]  P. Dorenbos,et al.  Nd/sup 3+/ and Pr/sup 3+/ doped inorganic scintillators , 1994 .

[121]  D. J. MacAllister,et al.  Application of X-Ray CT Scanning To Determine Gas/Water Relative Permeabilities , 1993 .

[122]  Andrzej J. Wojtowicz,et al.  Fundamental limits of scintillator performance , 1993 .

[123]  H. Murakami,et al.  Newly developed low background hard X-ray/gamma-ray telescope with the well-type phoswich counters , 1992, IEEE Conference on Nuclear Science Symposium and Medical Imaging.

[124]  P. Dorenbos,et al.  Scintillation properties of some Ce/sup 3+/ and Pr/sup 3+/ doped inorganic crystals , 1992, IEEE Conference on Nuclear Science Symposium and Medical Imaging.

[125]  P. Dorenbos,et al.  Detection of CdS(Te) and ZnSe(Te) scintillation light with silicon photodiodes , 1992 .

[126]  C. Melcher,et al.  Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator , 1991, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference.

[127]  C. Eijk Fast scintillators and their applications , 1991 .

[128]  F. H. Attix Introduction to Radiological Physics and Radiation Dosimetry , 1991 .

[129]  W. Moses,et al.  The scintillation properties of cerium-doped lanthanum fluoride , 1990 .

[130]  W. Moses,et al.  Prospects for new inorganic scintillators , 1990 .

[131]  G. Blasse New luminescent materials , 1989 .

[132]  P. Schotanus,et al.  Detection of LaF3:Nd3+ scintillation light in a photosensitive multiwire chamber , 1988 .

[133]  G. Boulon,et al.  Fluorescence decays and lifetimes of Nd3+, Ce3+ and Cr3+ in YAG , 1988 .

[134]  G. Mageras,et al.  A measurement of the light yield of common inorganic scintillators , 1988 .

[135]  Eiji Sakai,et al.  Recent Measurements on Scintillator-Photodetector Systems , 1987, IEEE Transactions on Nuclear Science.

[136]  R. Allemand,et al.  Barium fluoride — Inorganic scintillator for subnanosecond timing , 1983 .

[137]  M. Moszynski,et al.  RECENT PROGRESS IN FAST TIMING WITH CsF SCINTILLATORS IN APPLICATION TO TIME-OF-FLIGHT POSITRON TOMOGRAPHY IN MEDICINE , 1983 .

[138]  H.W. Kraner,et al.  Radiation detection and measurement , 1981, Proceedings of the IEEE.

[139]  A. T. Aldred,et al.  Localized level hopping transport in La(Sr)CrO/sub 3/ , 1979 .

[140]  F. D. Brooks Development of organic scintillators , 1979 .

[141]  N. A. Adrova,et al.  Preparation of 2,5-diphenyloxazole and its. scintillation efficiency in plastics , 1957 .

[142]  J. B. Birks,et al.  Scintillations from Organic Crystals: Specific Fluorescence and Relative Response to Different Radiations , 1951 .

[143]  J. C. Smeltzer Energy dependence of the naphthalene scintillation detector. , 1950, The Review of scientific instruments.

[144]  R. Hofstadter Alkali Halide Scintillation Counters , 1948 .

[145]  Harvey Hall,et al.  The Theory of Photoelectric Absorption for X-Rays and γ -Rays , 1936 .

[146]  J. Frenkel Über die Wärmebewegung in festen und flüssigen Körpern , 1926 .

[147]  W. Röntgen,et al.  ON A NEW KIND OF RAYS. , 1896, Science.

[148]  P. Lecoq,et al.  Inorganic Scintillators for Detector Systems , 2017 .

[149]  B. Chakoumakos,et al.  Scintillation properties of Eu2+-doped KBa2I5 and K2BaI4 , 2016 .

[150]  Katrin Baumgartner,et al.  Fundamentals Of Body Ct , 2016 .

[151]  M. D. Birowosuto,et al.  Li-Based Thermal Neutron Scintillator Research; { {Rb}}_{2}{ {LiYBr}}_{6}:{ {Ce}}(3+) and Other Elpa , 2008 .

[152]  P. Dorenbos,et al.  Li-Based Thermal Neutron Scintillator Research , 2008 .

[153]  Y. Pititeeraphab,et al.  X-Ray - Detector with CMOS Sensor Camera , 2007 .

[154]  G. Muehllehner,et al.  Positron emission tomography , 2006, Physics in medicine and biology.

[155]  J. G. Rocha,et al.  Optical coupling between scintillators and standard CMOS detectors , 2006 .

[156]  W. Drozdowski,et al.  Scintillation light yield of Ce-doped LuAP and LuYAP pixel crystals , 2006 .

[157]  Kanai S. Shah,et al.  Optical and Scintillation Properties of Cs LiYCl Ce and Cs LiYCl Pr Crystals , 2005 .

[158]  Pieter Dorenbos,et al.  Scintillation Properties of LuI3:Ce^3+-High Light Yield Scintillators , 2005 .

[159]  P. Dorenbosa,et al.  Luminescence and scintillation properties of the small band gap compound LaI 3 :Ce 3+ , 2004 .

[160]  P. Dorenbos,et al.  Scintillation properties of some Ce3+ and Pr3+ doped inorganic crystals* , 2004 .

[161]  Visser,et al.  Nd 3 + and P ? ' Doped Inorganic Scintillators , 2004 .

[162]  J. Glodo,et al.  Optical and Scintillation properties of Cs 2 LiYCl 6 : Ce 3 + and Cs 2 LiYCl 6 : Pr 3 + Crystals , 2004 .

[163]  M. Yaffe,et al.  X-ray detectors for digital radiography. , 1997, Physics in medicine and biology.

[164]  Pieter Dorenbos,et al.  Energy Loss in Inorganic Scintillators , 1995 .

[165]  Hideaki Yamamoto,et al.  Saturation of ZnS:Ag,Al under cathode‐ray excitation , 1994 .

[166]  A. Benedetto INTRODUCTION TO RADIOLOGICAL PHYSICS AND RADIATION DOSIMETRY. , 1986 .

[167]  P. Eisenberger,et al.  Compton Scattering of X Rays from Bound Electrons , 1970 .

[168]  R. Bauer,et al.  Fabrication of thin NaI(TI) scintillation layers for low energy X-ray detection☆ , 1967 .

[169]  K Hamamoto,et al.  [Scintillation camera]. , 1967, Saishin igaku. Modern medicine.

[170]  I. S. Sherman,et al.  Response of NaI, anthracene and plastic scintillators to electrons and the problems of detecting low energy electrons with scintillation counters☆ , 1966 .

[171]  R S Pease,et al.  REVIEW ARTICLES: The Displacement of Atoms in Solids by Radiation , 1955 .