A local meshless method for time fractional nonlinear diffusion wave equation

We present a radial basis function-based local collocation method for solving time fractional nonlinear diffusion wave equation.The main beauty of the local collocation method is that only the nodes located in the subdomain, surrounding the local collocation point, need to be considered when we are calculating the numerical solution at this point. We also prove the unconditional stability and convergence of the proposed scheme. Some numerical experiments are carried out and numerical results are compared with an analytical solution to confirm the efficiency and reliability of the proposed method.

[1]  Mehdi Dehghan,et al.  Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition , 2017, Comput. Math. Appl..

[2]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[3]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[4]  Jian Huang,et al.  Numerical approximation of a time-fractional Black-Scholes equation , 2018, Comput. Math. Appl..

[5]  Mehdi Dehghan,et al.  An efficient technique based on finite difference/finite element method for solution of two-dimensional space/multi-time fractional Bloch–Torrey equations , 2018, Applied Numerical Mathematics.

[6]  Ali H. Bhrawy,et al.  A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations , 2015, J. Comput. Phys..

[7]  Mehdi Dehghan,et al.  Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations , 2015, J. Comput. Appl. Math..

[8]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[9]  Zhibo Wang,et al.  A compact difference scheme for a two dimensional fractional Klein-Gordon equation with Neumann boundary conditions , 2014, J. Comput. Phys..

[10]  Ali Zaghian,et al.  A meshfree method based on the radial basis functions for solution of two-dimensional fractional evolution equation , 2015 .

[11]  Mehdi Dehghan,et al.  Solution of two-dimensional modified anomalous fractional sub-diffusion equation via radial basis functions (RBF) meshless method , 2014 .

[12]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[13]  Hongguang Sun,et al.  Fractional diffusion equations by the Kansa method , 2010, Comput. Math. Appl..

[14]  Zhi-zhong Sun,et al.  A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions , 2012, J. Comput. Phys..

[15]  V. Antony Vijesh,et al.  A radial basis function method for fractional Darboux problems , 2018 .

[16]  HongGuang Sun,et al.  A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation , 2016, J. Comput. Phys..

[17]  Vahid Reza Hosseini,et al.  Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping , 2016, J. Comput. Phys..

[18]  Akanksha Bhardwaj,et al.  A meshless local collocation method for time fractional diffusion wave equation , 2019, Comput. Math. Appl..

[19]  S. Haq,et al.  RBFs approximation method for time fractional partial differential equations , 2011 .

[20]  M. Dehghan,et al.  Solving nonlinear fractional partial differential equations using the homotopy analysis method , 2010 .

[21]  Bangti Jin,et al.  The Galerkin finite element method for a multi-term time-fractional diffusion equation , 2014, J. Comput. Phys..

[22]  YuanTong Gu,et al.  AN ADVANCED MESHLESS METHOD FOR TIME FRACTIONAL DIFFUSION EQUATION , 2011 .

[23]  Prasad K. Yarlagadda,et al.  Time‐dependent fractional advection–diffusion equations by an implicit MLS meshless method , 2011 .

[24]  Rezvan Salehi,et al.  A meshless point collocation method for 2-D multi-term time fractional diffusion-wave equation , 2017, Numerical Algorithms.

[25]  Fawang Liu,et al.  A RBF meshless approach for modeling a fractal mobile/immobile transport model , 2014, Appl. Math. Comput..

[26]  Ahmad Golbabai,et al.  Computing a numerical solution of two dimensional non-linear Schrödinger equation on complexly shaped domains by RBF based differential quadrature method , 2016, J. Comput. Phys..

[27]  YuanTong Gu,et al.  Anomalous sub-diffusion equations by the meshless collocation method , 2012 .

[28]  Mostafa Abbaszadeh,et al.  The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics , 2013 .

[29]  Rob H. De Staelen,et al.  Numerically pricing double barrier options in a time-fractional Black-Scholes model , 2017, Comput. Math. Appl..

[30]  Mehdi Dehghan,et al.  An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein–Gordon equations , 2015 .

[31]  Scott A. Sarra,et al.  A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains , 2012, Appl. Math. Comput..

[32]  Mehdi Dehghan,et al.  The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations , 2017, J. Comput. Phys..

[33]  Mehdi Dehghan,et al.  Two meshless procedures: moving Kriging interpolation and element-free Galerkin for fractional PDEs , 2017 .

[34]  M. H. Heydari,et al.  A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation , 2017, J. Comput. Phys..

[35]  Ali Zaghian,et al.  A local weak form meshless method to simulate a variable order time-fractional mobile–immobile transport model , 2018 .

[36]  Carlo Cattani,et al.  A meshless method for solving the time fractional advection-diffusion equation with variable coefficients , 2017, Comput. Math. Appl..

[37]  Mehdi Dehghan,et al.  Analysis of a meshless method for the time fractional diffusion-wave equation , 2016, Numerical Algorithms.

[38]  Mehdi Dehghan,et al.  A meshless technique based on the local radial basis functions collocation method for solving parabolic–parabolic Patlak–Keller–Segel chemotaxis model , 2015 .

[39]  A. M. Nagy Numerical solution of time fractional nonlinear Klein-Gordon equation using Sinc-Chebyshev collocation method , 2017, Appl. Math. Comput..

[40]  Na Liu,et al.  An implicit MLS meshless method for 2-D time dependent fractional diffusion–wave equation , 2015 .

[41]  Sabine Fenstermacher,et al.  Numerical Approximation Of Partial Differential Equations , 2016 .

[42]  Wen Chen,et al.  Numerical solution of fractional telegraph equation by using radial basis functions , 2014 .

[43]  Mehdi Dehghan,et al.  Analysis of the element free Galerkin (EFG) method for solving fractional cable equation with Dirichlet boundary condition , 2016 .

[44]  M. Dehghan,et al.  Two-dimensional simulation of the damped Kuramoto–Sivashinsky equation via radial basis function-generated finite difference scheme combined with an exponential time discretization , 2019, Engineering Analysis with Boundary Elements.

[45]  Zhongqiang Zhang,et al.  Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations , 2016, J. Comput. Phys..

[46]  Liang Yan,et al.  Efficient Kansa-type MFS algorithm for time-fractional inverse diffusion problems , 2014, Comput. Math. Appl..