An ALMA/NOEMA study of gas dissipation and dust evolution in the 5 Myr-old HD 141569A hybrid disc

Context. The study of gas-rich debris discs is fundamental to characterising the transition between protoplanetary discs and debris discs. Aims. We determine the physical parameters of the brightest gas-rich debris disc orbiting HD 141569A. Methods. We analyse images from the NOrthern Extended Millimeter Array (NOEMA)1 and the Atacama Large Millimeter/ submillimeter Array (ALMA) in 12CO, 13CO J = 2 → 1, and 13CO J = 1 → 0 transitions. We incorporate ALMA archival data of the 12CO J = 3 → 2 transition and present continuum maps at 0.87, 1.3, and 2.8 mm. We use simple parametric laws with the Diskfit code and MCMC exploration to characterise the gas disc parameters and report a first attempt to characterise its chemical content with IRAM-30 m. Results. The continuum emission is equally shared between a compact (≲50 au) and a smooth, extended dust component (~350 au). Large millimetre grains seem to dominate the inner regions, while the dust spectral index is marginally larger in the outer region. The 12CO is optically thick, while 13CO is optically thin with τ13CO ~ 0.15 (C18O is not detected). The 13CO surface density is constrained to be one order of magnitude smaller than around younger Herbig Ae stars, and we derive a gas mass M12CO = 10−1M⊕. We confirm the presence of a small CO cavity (RCO = 17 ± 3 au), and find a possibly larger radius for the optically thin 13CO J = 2 → 1 transition (35 ± 5 au). We show that the observed CO brightness asymmetry is coincident with the complex ring structures discovered with VLT/SPHERE in the inner 90 au. The 12CO temperature T0(100 au) ~ 30 K is lower than expected for a Herbig A0 star, and could be indicative of subthermal excitation. Conclusions. With the largest amount of dust and gas among hybrid discs, HD 141569A shows coincident characteristics of both protoplanetary discs (central regions), and debris discs at large distance. Together with its morphological characteristics and young age, it appears to be a good candidate to witness the transient phase of gas dissipation, with an apparently large gas-to-dust ratio (G∕D > 100) favouring a faster evolution of dust grains.

[1]  Ercan Kilicarslan On memory effect in modified gravity theories , 2018, TURKISH JOURNAL OF PHYSICS.

[2]  Luca Ricci,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview , 2018, The Astrophysical Journal.

[3]  M. Langlois,et al.  Evolution of protoplanetary disks from their taxonomy in scattered light: spirals, rings, cavities, and shadows , 2018, Astronomy & Astrophysics.

[4]  Unlocking the secrets of the midplane gas and dust distribution in the young hybrid disc HD 141569 , 2018, Astronomy & Astrophysics.

[5]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[6]  A. Boley,et al.  Extended Millimeter Emission in the HD 141569 Circumstellar Disk Detected with ALMA , 2018, The Astrophysical Journal.

[7]  Sascha P. Quanz,et al.  Disks around T Tauri Stars with SPHERE (DARTTS-S). I. SPHERE/IRDIS Polarimetric Imaging of Eight Prominent T Tauri Disks , 2018, The Astrophysical Journal.

[8]  B. Matthews,et al.  Debris Disks: Structure, Composition, and Variability , 2018, Annual Review of Astronomy and Astrophysics.

[9]  Jonathan P. Williams,et al.  New Insights into the Nature of Transition Disks from a Complete Disk Survey of the Lupus Star-forming Region , 2018, 1801.06154.

[10]  A. Boley,et al.  ALMA and VLA observations of the HD 141569 system , 2017, 1711.07489.

[11]  T. Henning,et al.  Molecular Gas in Debris Disks around Young A-type Stars , 2017, 1709.08414.

[12]  T. Henning,et al.  The Flying Saucer: Tomography of the thermal and density gas structure of an edge-on protoplanetary disk , 2017, 1706.02608.

[13]  M. Wyatt,et al.  Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals , 2017, 1703.10693.

[14]  J. Wisniewski,et al.  The Sizes and Depletions of the Dust and Gas Cavities in the Transitional Disk J160421.7-213028 , 2017, 1701.05189.

[15]  A. Miotello Lupus disks with faint CO isotopologues: low gas/dust or high carbon depletion? , 2016, Proceedings of the International Astronomical Union.

[16]  J. Augereau,et al.  Exocometary gas structure, origin and physical properties around β Pictoris through ALMA CO multitransition observations , 2016, 1609.06718.

[17]  A. Dutrey,et al.  The hybrid disks: a search and study to better understand evolution of disks , 2016, 1612.06582.

[18]  Dimitri Mawet,et al.  CHARACTERIZATION OF THE INNER DISK AROUND HD 141569 A FROM KECK/NIRC2 L-BAND VORTEX CORONAGRAPHY , 2016, 1612.03091.

[19]  B. Lazareff,et al.  Structure of Herbig AeBe disks at the milliarcsecond scale: A statistical survey in the H band using PIONIER-VLTI , 2016, 1611.08428.

[20]  T. Henning,et al.  NEW DEBRIS DISKS IN NEARBY YOUNG MOVING GROUPS , 2016, 1606.09179.

[21]  K. Flaherty,et al.  DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION RESOLVED BY ALMA , 2016, 1606.07068.

[22]  K. Flaherty,et al.  ALMA OBSERVATIONS OF HD 141569’s CIRCUMSTELLAR DISK , 2016, 1606.00442.

[23]  E. Dishoeck,et al.  Determining protoplanetary disk gas masses from CO isotopologues line observations , 2016, 1605.07780.

[24]  T. Fusco,et al.  Discovery of concentric broken rings at sub-arcsec separations in the HD 141569A gas-rich, debris disk with VLT/SPHERE , 2016, 1605.00468.

[25]  K. Stassun,et al.  THE MATRYOSHKA DISK: KECK/NIRC2 DISCOVERY OF A SOLAR-SYSTEM-SCALE, RADIALLY SEGREGATED RESIDUAL PROTOPLANETARY DISK AROUND HD 141569A , 2016, 1602.01219.

[26]  J. Wisniewski,et al.  DISCOVERY OF AN INNER DISK COMPONENT AROUND HD 141569 A , 2016, 1601.06560.

[27]  K. Flaherty,et al.  RESOLVED CO GAS INTERIOR TO THE DUST RINGS OF THE HD 141569 DISK , 2016, 1601.02642.

[28]  E. Chapillon,et al.  The shadow of the Flying Saucer: A very low temperature for large dust grains , 2016, 1601.01548.

[29]  Astrophysics,et al.  Resolved gas cavities in transitional disks inferred from CO isotopologs with ALMA , 2015, 1511.07149.

[30]  M. Simon,et al.  Sensitive survey for 13CO, CN, H2CO, and SO in the disks of T Tauri and Herbig Ae stars - II. Stars in ρ Ophiuchi and upper Scorpius , 2015, 1504.04542.

[31]  R. Neri,et al.  Chemical composition of the circumstellar disk around AB Aurigae , 2015, 1503.04112.

[32]  W. Dent,et al.  CO mass upper limits in the Fomalhaut ring - the importance of NLTE excitation in debris discs and future prospects with ALMA , 2014, 1412.2757.

[33]  M. Wyatt,et al.  Five steps in the evolution from protoplanetary to debris disk , 2014, 1412.5598.

[34]  C. Dominik,et al.  The structure of disks around Herbig Ae/Be stars as traced by CO ro-vibrational emission , 2014, 1412.1311.

[35]  A. Lagrange,et al.  Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk , 2014, Science.

[36]  Jonathan P. Williams,et al.  A PARAMETRIC MODELING APPROACH TO MEASURING THE GAS MASSES OF CIRCUMSTELLAR DISKS , 2013, 1312.0151.

[37]  D. Apai,et al.  ALMA OBSERVATIONS OF THE MOLECULAR GAS IN THE DEBRIS DISK OF THE 30 Myr OLD STAR HD 21997 , 2013, 1310.5068.

[38]  J. Augereau,et al.  Gas lines from the 5-Myr old optically thin disk around HD 141569A Herschel observations and modeling , 2013, 1309.5098.

[39]  M. Kuchner,et al.  Formation of sharp eccentric rings in debris disks with gas but without planets , 2013, Nature.

[40]  L. Testi,et al.  Unveiling the gas-and-dust disk structure in HD 163296 using ALMA observations , 2013, 1307.1357.

[41]  Geoffrey A. Blake,et al.  An old disk still capable of forming a planetary system , 2013, Nature.

[42]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[43]  L. Mundy,et al.  CONSTRAINTS ON THE RADIAL VARIATION OF GRAIN GROWTH IN THE AS 209 CIRCUMSTELLAR DISK , 2012, 1210.5252.

[44]  Jonathan P. Williams,et al.  Observations of Herbig Ae/Be stars with Herschel/PACS , 2012 .

[45]  L. Testi,et al.  Trapping dust particles in the outer regions of protoplanetary disks , 2011, 1112.2349.

[46]  D. Apai,et al.  MOLECULAR GAS IN YOUNG DEBRIS DISKS , 2011, 1109.2299.

[47]  A. Dutrey,et al.  A dual-frequency sub-arcsecond study of proto-planetary disks at mm wavelengths: first evidence for radial variations of the dust properties , 2011 .

[48]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[49]  Catherine Espaillat,et al.  RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS , 2011, 1103.0284.

[50]  Catherine Espaillat,et al.  TRANSITIONAL AND PRE-TRANSITIONAL DISKS: GAP OPENING BY MULTIPLE PLANETS? , 2010, 1012.4395.

[51]  Science,et al.  Kuiper belts around nearby stars , 2010, 1005.3215.

[52]  M. E. van den Ancker,et al.  Timescale of mass accretion in pre-main-sequence stars , 2009, 0911.3320.

[53]  E. Dishoeck,et al.  The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks , 2009, 0906.3699.

[54]  H. Beust,et al.  Investigating the flyby scenario for the HD 141569 system , 2008, 0809.4421.

[55]  T. Henning,et al.  Chemistry in disks II. Poor molecular content of the AB Aurigae disk , 2008, 0809.3473.

[56]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[57]  A. Dutrey,et al.  Probing the structure of protoplanetary disks: a comparative study of DM Tau, LkCa 15, and MWC 480 , 2007, astro-ph/0701425.

[58]  Subaru Telescope,et al.  Inner Rim of a Molecular Disk Spatially Resolved in Infrared CO Emission Lines , 2006, astro-ph/0606362.

[59]  K. H. Kim,et al.  Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks , 2006, astro-ph/0605277.

[60]  J. Augereau,et al.  Modeling the gas-phase chemistry of the transitional disk around HD 141569A , 2006, astro-ph/0603515.

[61]  A. Dutrey,et al.  Deuterated molecules in DM Tauri: DCO$^+$, but no HDO , 2006, astro-ph/0602396.

[62]  Cfa,et al.  Study of the properties and spectral energy distributions of the Herbig AeBe stars HD 34282 and HD 141569 , 2004, astro-ph/0402599.

[63]  R. Bouwens,et al.  Hubble Space Telescope ACS Coronagraphic Imaging of the Circumstellar Disk around HD 141569A , 2003, astro-ph/0303605.

[64]  A. Boccaletti,et al.  Ground-based Near-Infrared Imaging of the HD 141569 Circumstellar Disk , 2002, astro-ph/0211648.

[65]  M. Barlow,et al.  SCUBA photometry of candidate Vega-like sources , 2001 .

[66]  D. Mouillet,et al.  Asymmetries in the HD 141569 circumstellar disk , 2001 .

[67]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[68]  T. Takeuchi,et al.  Dust Migration and Morphology in Optically Thin Circumstellar Gas Disks , 2000, astro-ph/0012464.

[69]  R. Rich,et al.  Stellar Companions and the Age of HD 141569 and Its Circumstellar Disk , 2000, astro-ph/0007170.

[70]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[71]  E. Becklin,et al.  The Circumstellar Disk of HD 141569 Imaged with NICMOS , 1999, The Astrophysical journal.

[72]  Alexander G. G. M. Tielens,et al.  Photodissociation Regions in the Interstellar Medium of Galaxies , 1999 .

[73]  M. Barlow,et al.  Optical, infrared and millimetre-wave properties of Vega-like systems - II. Radiative transfer modelling , 1996 .

[74]  T. Forveille,et al.  Inhibition of giant-planet formation by rapid gas depletion around young stars , 1995, Nature.

[75]  T. Wilson,et al.  Abundances in the interstellar medium , 1992 .

[76]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .