Monolithically Integrated Mid-Infrared Quantum Cascade Laser and Detector

We demonstrate the monolithic integration of a mid-infrared laser and detector utilizing a bi-functional quantum cascade active region. When biased, this active region provides optical gain, while it can be used as a detector at zero bias. With our novel approach we can measure the light intensity of the laser on the same chip without the need of external lenses or detectors. Based on a bound-to-continuum design, the bi-functional active region has an inherent broad electro-luminescence spectrum of 200 cm⁻¹, which indicates its use for single mode laser arrays. We have measured a peak signal of 191.5 mV at the on-chip detector, without any amplification. The room-temperature pulsed emission with an averaged power consumption of 4 mW and the high-speed detection makes these devices ideal for low-power sensors. The combination of the on-chip detection functionality, the broad emission spectrum and the low average power consumption indicates the potential of our bi-functional quantum cascade structures to build a mid-infrared lab-on-a-chip based on quantum cascade laser technology.

[1]  A. Wittmann,et al.  Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 $\mu$ m , 2009, IEEE Photonics Technology Letters.

[2]  Z. Stanojevic,et al.  Monte Carlo Simulation of Electron Transport in Quantum Cascade Lasers , 2011 .

[3]  Yargo Bonetti,et al.  External cavity quantum cascade laser tunable from 7.6 to 11.4 μm , 2009 .

[4]  F. Capasso,et al.  Quantum cascade lasers in chemical physics , 2010 .

[5]  Daniel Hofstetter,et al.  Microfluidic tuning of distributed feedback quantum cascade lasers. , 2006, Optics express.

[6]  K. Kohler,et al.  Quantum Cascade Detectors , 2009, IEEE Journal of Quantum Electronics.

[7]  Manijeh Razeghi,et al.  High power broad area quantum cascade lasers , 2009 .

[8]  Mattias Beck,et al.  Quantum-cascade-laser structures as photodetectors , 2002 .

[9]  M. Lipson,et al.  Cavity-enhanced on-chip absorption spectroscopy using microring resonators. , 2008, Optics express.

[10]  Hooman Mohseni,et al.  Integration of plasmonic antenna on quantum cascade laser facets for chip-scale molecular sensing , 2010, 2010 IEEE Sensors.

[11]  Claire F. Gmachl,et al.  Single-mode quantum cascade lasers employing asymmetric Mach-Zehnder interferometer type cavities , 2012 .

[12]  Werner Schrenk,et al.  Reversible switching of quantum cascade laser-modes using a pH-responsive polymeric cladding as transducer. , 2008, Optics express.

[13]  Jacob B. Khurgin,et al.  Highly power-efficient quantum cascade lasers , 2010 .

[14]  Werner Schrenk,et al.  Low divergence single-mode surface emitting quantum cascade ring lasers , 2008 .

[15]  S. Xiao,et al.  Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications , 2007, 0707.1194.

[16]  Eric Costard,et al.  Advantages of quantum cascade detectors , 2008, SPIE OPTO.

[17]  Sven Höfling,et al.  Single mode emitting ridge waveguide quantum cascade lasers coupled to an active ring resonator filter , 2008 .

[18]  Hans Peter Herzig,et al.  CO2 isotope sensor using a broadband infrared source, a spectrally narrow 4.4 μm quantum cascade detector, and a Fourier spectrometer , 2011 .

[19]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[20]  Christian Pflugl,et al.  Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers. , 2007, Optics express.

[21]  Gottfried Strasser,et al.  Two-dimensional broadband distributed-feedback quantum cascade laser arrays , 2011 .

[22]  Erich Gornik,et al.  Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser , 2000 .

[23]  E. Gini,et al.  High-Performance Bound-to-Continuum Quantum-Cascade Lasers for Broad-Gain Applications , 2008, IEEE Journal of Quantum Electronics.

[24]  Daniel Hofstetter,et al.  23GHz operation of a room temperature photovoltaic quantum cascade detector at 5.35μm , 2006 .

[25]  Claire F. Gmachl,et al.  High performance “continuum-to-continuum” quantum cascade lasers with a broad gain bandwidth of over 400 cm−1 , 2010 .

[26]  Manijeh Razeghi,et al.  Quantum cascade lasers that emit more light than heat , 2010 .

[27]  Federico Capasso,et al.  Ultra-broadband semiconductor laser , 2002, Nature.

[28]  Marcella Giovannini,et al.  Design and fabrication of photonic crystal quantum cascade lasers for optofluidics. , 2007, Optics express.

[29]  Werner Schrenk,et al.  A bi-functional quantum cascade device for same-frequency lasing and detection , 2012 .

[30]  Frank K. Tittel,et al.  Chemical sensors based on quantum cascade lasers , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).