Regulating mechanical performance of poly (l-lactide acid) stent by the combined effects of heat and aqueous media.

[1]  Z. Ni,et al.  Evaluation of resistance to radial cyclic loads of poly(L-lactic acid) braided stents with different braiding angles. , 2022, International journal of biological macromolecules.

[2]  Yi Zhang,et al.  Evaluation of poly (L-lactic acid) monofilaments with high mechanical performance in vitro degradation , 2022, Journal of Materials Science.

[3]  Juekuan Yang,et al.  Poly(l-lactic acid) monofilaments for biodegradable braided self-expanding stent , 2021, Journal of Materials Science.

[4]  Z. Ni,et al.  Effects of annealing constraint methods on poly(L‐lactic acid) monofilaments for application in stents annealing , 2021 .

[5]  M. L. Young,et al.  Designing Better Cardiovascular Stent Materials: A Learning Curve , 2020, Advanced functional materials.

[6]  M. Yamaguchi,et al.  Transparent poly(lactic acid) film crystallized by annealing beyond glass transition temperature , 2020, Journal of Polymer Research.

[7]  Su A. Park,et al.  Heparin coating on 3D printed poly (l-lactic acid) biodegradable cardiovascular stent via mild surface modification approach for coronary artery implantation , 2019 .

[8]  Guixue Wang,et al.  Lactic acid-mediated endothelial to Mesenchymal transition through TGF-β1 contributes to in-stent stenosis in poly-L-lactic acid stent. , 2019, International journal of biological macromolecules.

[9]  F. Heim,et al.  Elastic recovery of polymeric braided stents under cyclic loading: Preliminary assessment. , 2019, Journal of the mechanical behavior of biomedical materials.

[10]  Mostafa Baghani,et al.  Force recovery evaluation of thermo-induced shape-memory polymer stent: material, process and thermo-viscoelastic characterization , 2019, Smart Materials and Structures.

[11]  P. Carreau,et al.  Poly (lactic acid) blends: Processing, properties and applications. , 2019, International journal of biological macromolecules.

[12]  I. Rao,et al.  A thermodynamic framework for the modeling of crystallizable triple shape memory polymers , 2019, International Journal of Engineering Science.

[13]  Deyu Li,et al.  Thermal transport in electrospun vinyl polymer nanofibers: effects of molecular weight and side groups. , 2018, Soft matter.

[14]  Guixue Wang,et al.  Biodegradable stents for coronary artery disease treatment: Recent advances and future perspectives. , 2018, Materials science & engineering. C, Materials for biological applications.

[15]  R. Virmani,et al.  Understanding the Impact of Stent and Scaffold Material and Strut Design on Coronary Artery Thrombosis from the Basic and Clinical Points of View , 2018, Bioengineering.

[16]  Le Li,et al.  Tailoring Crystalline Morphology by High-Efficiency Nucleating Fiber: Toward High-Performance Poly(l-lactide) Biocomposites. , 2018, ACS applied materials & interfaces.

[17]  Ł. Figiel,et al.  An investigation into the crystalline morphology transitions in poly-L-lactic acid (PLLA) under uniaxial deformation in the quasi-solid-state regime , 2018 .

[18]  Yi Hao,et al.  A new approach to improve the local compressive properties of PPDO self-expandable stent. , 2017, Journal of the mechanical behavior of biomedical materials.

[19]  Congling Wang,et al.  In Vitro Degradation Behaviours of PDO Monofilament and Its Intravascular Stents with Braided Structure , 2016 .

[20]  Robert Langer,et al.  Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. , 2016, Advanced drug delivery reviews.

[21]  Zhongmin Yang,et al.  Flexible and transparent optically anisotropic films based on oriented assembly of nanofibers , 2016 .

[22]  Fang Mai,et al.  The Influence of Solid-State Drawing on Mechanical Properties and Hydrolytic Degradation of Melt-Spun Poly(Lactic Acid) (PLA) Tapes , 2015 .

[23]  J. Reisch,et al.  Influence of Thermal Annealing on the Mechanical Properties of PLLA Coiled Stents , 2014 .

[24]  A. Lendlein,et al.  Influence of the addition of water to amorphous switching domains on the simulated shape-memory properties of poly(l-lactide) , 2013 .

[25]  Wanxi Zhang,et al.  Insight into the annealing peak and microstructural changes of poly(l-lactic acid) by annealing at elevated temperatures , 2013 .

[26]  C. Di Mario,et al.  Stent flexibility versus concertina effect: mechanism of an unpleasant trade-off in stent design and its implications for stent selection in the cath-lab. , 2013, International journal of cardiology.

[27]  K. C. Wong,et al.  Structure, molecular orientation, and resultant mechanical properties in core/ sheath poly(lactic acid)/polypropylene composites , 2012 .

[28]  H. Deng,et al.  Tailoring impact toughness of poly(L-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. , 2012, ACS applied materials & interfaces.

[29]  G. Camino,et al.  Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites , 2011 .

[30]  Long Jiang,et al.  Degradation of Poly(L-lactide) Films under Ultraviolet Irradiation and Water Bath , 2011 .

[31]  M. Malinconico,et al.  Influence of crystal polymorphism on mechanical and barrier properties of poly(l-lactic acid) , 2011 .

[32]  Wei Wang,et al.  Spectroscopic Study on Water Diffusion in Poly(L-lactide)-Poly(ethylene glycol) Diblock Copolymer Film , 2011 .

[33]  S. Venkatraman,et al.  A Simple Method for Obtaining the Information of Orientation Distribution Using Polarized Raman Spectroscopy: Orientation Study of Structural Units in Poly(lactic acid) , 2011 .

[34]  F. Szabó,et al.  Crystalline structure of annealed polylactic acid and its relation to processing , 2010 .

[35]  M. Cakmak,et al.  Comparative study on development of structural hierarchy in constrained annealed simultaneous and sequential biaxially stretched polylactic acid films , 2010 .

[36]  Q. Fu,et al.  Annealing-Induced Oriented Crystallization and Its Influence on the Mechanical Responses in the Melt-Spun Monofilament of Poly(l-lactide) , 2010 .

[37]  Y. Inoue,et al.  Polymorphism and isomorphism in biodegradable polyesters , 2009 .

[38]  Z. Stachurski,et al.  Orientation and Structure Development in Poly(lactide) under Uniaxial Deformation , 2008 .

[39]  M. Yamaguchi,et al.  Structure and properties of injection-molded polypropylene with sorbitol-based clarifier , 2007 .

[40]  R. Young,et al.  Molecular orientation distributions in a biaxially oriented poly(L-lactic acid) film determined by polarized Raman spectroscopy. , 2006, Biomacromolecules.

[41]  S. Hsu,et al.  Morphological study on thermal shrinkage and dimensional stability associated with oriented poly(lactic acid) , 2005 .

[42]  R. Cameron,et al.  A degradation study of PLLA containing lauric acid. , 2005, Biomaterials.

[43]  J F Orr,et al.  Degradation of poly-L-lactide. Part 2: Increased temperature accelerated degradation , 2004, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[44]  R. Gupta,et al.  Non-linear viscoelasticity and viscoplasticity of isotactic polypropylene , 2003 .

[45]  N. Mohri,et al.  Dynamic mechanical properties of solution-cast poly(l-lactide) films , 2002 .

[46]  Xiaozhen Yang,et al.  An analysis of the correlation between structural anisotropy and dimensional stability for drawn poly(lactic acid) films , 2001 .

[47]  P. Gruber,et al.  Polylactic Acid Technology , 2000 .

[48]  Catia Bastioli,et al.  Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties , 1996 .

[49]  J. W. Leenslag,et al.  High-strength poly(l-lactide) fibres by a dry-spinning/hot-drawing process , 1987 .

[50]  B. Reddy,et al.  Computational analysis of the radial mechanical performance of PLLA coronary artery stents. , 2015, Medical engineering & physics.

[51]  K P Schmitz,et al.  THE IMPACT OF MATERIAL CHARACTERISTICS ON THE MECHANICAL PROPERTIES OF A POLY(L-LACTIDE) CORONARY STENT , 2002, Biomedizinische Technik. Biomedical engineering.

[52]  C. M. Agrawal,et al.  Evaluation of poly(L-lactic acid) as a material for intravascular polymeric stents. , 1992, Biomaterials.