GABA and neuroligin signaling: linking synaptic activity and adhesion in inhibitory synapse development

GABA-mediated synaptic inhibition is crucial in neural circuit operations. In mammalian brains, the development of inhibitory synapses and innervation patterns is often a prolonged postnatal process, regulated by neural activity. Emerging evidence indicates that gamma-aminobutyric acid (GABA) acts beyond inhibitory transmission and regulates inhibitory synapse development. Indeed, GABA(A) receptors not only function as chloride channels that regulate membrane voltage and conductance but also play structural roles in synapse maturation and stabilization. The link from GABA(A) receptors to postsynaptic and presynaptic adhesion is probably mediated, partly by neuroligin-reurexin interactions, which are potent in promoting GABAergic synapse formation. Therefore, similar to glutamate signaling at excitatory synapse, GABA signaling may coordinate maturation of presynaptic and postsynaptic sites at inhibitory synapses. Defining the many steps from GABA signaling to receptor trafficking/stability and neuroligin function will provide further mechanistic insights into activity-dependent development and possibly plasticity of inhibitory synapses.

[1]  Christian Rosenmund,et al.  Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Li I. Zhang,et al.  Electrical activity and development of neural circuits , 2001, Nature Neuroscience.

[3]  P. Wahle,et al.  Patterns of spontaneous activity and morphology of interneuron types in organotypic cortex and thalamus–cortex cultures , 1999, Neuroscience.

[4]  M. Ehlers,et al.  Diffusional Trapping of GluR1 AMPA Receptors by Input-Specific Synaptic Activity , 2007, Neuron.

[5]  R. Malinow,et al.  PSD-95 is required for activity-driven synapse stabilization , 2007, Proceedings of the National Academy of Sciences.

[6]  T. Yagi,et al.  Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Mark von Zastrow,et al.  Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures , 1999, Nature Neuroscience.

[8]  D. L. Martin,et al.  Two isoforms of glutamate decarboxylase: why? , 1998, Trends in pharmacological sciences.

[9]  Yehezkel Ben-Ari,et al.  Trophic actions of GABA on neuronal development , 2005, Trends in Neurosciences.

[10]  P. Scheiffele,et al.  Alternative Splicing Controls Selective Trans-Synaptic Interactions of the Neuroligin-Neurexin Complex , 2006, Neuron.

[11]  J. Levinson,et al.  Building Excitatory and Inhibitory Synapses: Balancing Neuroligin Partnerships , 2005, Neuron.

[12]  K. Obata,et al.  GABA and histogenesis in fetal and neonatal mouse brain lacking both the isoforms of glutamic acid decarboxylase , 1999, Neuroscience Research.

[13]  T. Südhof,et al.  Deletion of α‐neurexins does not cause a major impairment of axonal pathfinding or synapse formation , 2007, The Journal of comparative neurology.

[14]  A. Triller,et al.  Activity-Dependent Movements of Postsynaptic Scaffolds at Inhibitory Synapses , 2006, The Journal of Neuroscience.

[15]  Yehezkel Ben-Ari,et al.  The Establishment of GABAergic and Glutamatergic Synapses on CA1 Pyramidal Neurons is Sequential and Correlates with the Development of the Apical Dendrite , 1999, The Journal of Neuroscience.

[16]  A. Kirkwood,et al.  Dark Rearing Alters the Development of GABAergic Transmission in Visual Cortex , 2002, The Journal of Neuroscience.

[17]  Y. Ben-Ari,et al.  Giant synaptic potentials in immature rat CA3 hippocampal neurones. , 1989, The Journal of physiology.

[18]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[19]  Rafael Yuste,et al.  Spine Motility Phenomenology, Mechanisms, and Function , 2002, Neuron.

[20]  Gong Chen,et al.  Molecular reconstitution of functional GABAergic synapses with expression of neuroligin-2 and GABAA receptors , 2007, Molecular and Cellular Neuroscience.

[21]  Rafael Yuste,et al.  Bidirectional Regulation of Hippocampal Mossy Fiber Filopodial Motility by Kainate Receptors A Two-Step Model of Synaptogenesis , 2003, Neuron.

[22]  Thomas C. Südhof,et al.  A Splice Code for trans-Synaptic Cell Adhesion Mediated by Binding of Neuroligin 1 to α- and β-Neurexins , 2005, Neuron.

[23]  S. Moss,et al.  GABAA Receptors: Properties and Trafficking , 2007, Critical reviews in biochemistry and molecular biology.

[24]  J. Sanes,et al.  Roles of Neurotransmitter in Synapse Formation Development of Neuromuscular Junctions Lacking Choline Acetyltransferase , 2002, Neuron.

[25]  Y. Ben-Ari,et al.  Early sequential formation of functional GABAA and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus , 2002, The European journal of neuroscience.

[26]  Mu-ming Poo,et al.  Turning of nerve growth cones induced by neurotransmitters , 1994, Nature.

[27]  X. Leinekugel,et al.  Synaptic GABAA activation induces Ca2+ rise in pyramidal cells and interneurons from rat neonatal hippocampal slices. , 1995, The Journal of physiology.

[28]  Karel Svoboda,et al.  Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs , 2004, Nature Neuroscience.

[29]  A. Craig,et al.  Structure Function and Splice Site Analysis of the Synaptogenic Activity of the Neurexin-1β LNS Domain , 2006, The Journal of Neuroscience.

[30]  M. Miller,et al.  Maturation of rat visual cortex. III. Postnatal morphogenesis and synaptogenesis of local circuit neurons. , 1986, Brain research.

[31]  Y. Ben-Ari,et al.  Interneurons set the tune of developing networks , 2004, Trends in Neurosciences.

[32]  T. Südhof,et al.  α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis , 2003, Nature.

[33]  J. A. Payne,et al.  The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation , 1999, Nature.

[34]  Stephen J. Smith,et al.  Neural activity and the dynamics of central nervous system development , 2004, Nature Neuroscience.

[35]  J. Fritschy,et al.  Molecular and synaptic organization of GABAA receptors in the cerebellum: Effects of targeted subunit gene deletions , 2008, The Cerebellum.

[36]  K. Vogt,et al.  Differential Dependence of Axo-Dendritic and Axo-Somatic GABAergic Synapses on GABAA Receptors Containing the α1 Subunit in Purkinje Cells , 2006, The Journal of Neuroscience.

[37]  R. Khazipov,et al.  GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. , 2007, Physiological reviews.

[38]  R. Wong,et al.  Changing specificity of neurotransmitter regulation of rapid dendritic remodeling during synaptogenesis , 2001, Nature Neuroscience.

[39]  M. Pangalos,et al.  The Clustering of GABAA Receptor Subtypes at Inhibitory Synapses is Facilitated via the Direct Binding of Receptor α2 Subunits to Gephyrin , 2008, The Journal of Neuroscience.

[40]  Thomas C. Südhof,et al.  Neuroligins Determine Synapse Maturation and Function , 2006, Neuron.

[41]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[42]  L. Maffei,et al.  Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity , 2007, Nature Neuroscience.

[43]  N. Brose,et al.  Synaptic Cell Adhesion Proteins and Synaptogenesis in the Mammalian Central Nervous System , 1999, Naturwissenschaften.

[44]  R. Malenka,et al.  AMPA receptor trafficking and synaptic plasticity. , 2002, Annual review of neuroscience.

[45]  P. Scheiffele,et al.  Control of Excitatory and Inhibitory Synapse Formation by Neuroligins , 2005, Science.

[46]  Tsutomu Hashikawa,et al.  Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95–neuroligin , 2007, Nature Neuroscience.

[47]  A. Craig,et al.  Induction of GABAergic Postsynaptic Differentiation by α-Neurexins* , 2008, Journal of Biological Chemistry.

[48]  G. Knott,et al.  Experience and Activity-Dependent Maturation of Perisomatic GABAergic Innervation in Primary Visual Cortex during a Postnatal Critical Period , 2004, The Journal of Neuroscience.

[49]  F. Gage,et al.  Aberrant Patterning of Neuromuscular Synapses in Choline Acetyltransferase-Deficient Mice , 2003, The Journal of Neuroscience.

[50]  C. Keller,et al.  GODZ-Mediated Palmitoylation of GABAA Receptors Is Required for Normal Assembly and Function of GABAergic Inhibitory Synapses , 2006, The Journal of Neuroscience.

[51]  M. Pangalos,et al.  Activity-Dependent Ubiquitination of GABAA Receptors Regulates Their Accumulation at Synaptic Sites , 2007, The Journal of Neuroscience.

[52]  Z. J. Huang,et al.  Development of GABA innervation in the cerebral and cerebellar cortices , 2007, Nature Reviews Neuroscience.

[53]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[54]  J. Loturco,et al.  Disruption of postsynaptic GABAA receptor clusters leads to decreased GABAergic innervation of pyramidal neurons , 2005, Journal of neurochemistry.

[55]  T. Südhof,et al.  Activity-Dependent Validation of Excitatory versus Inhibitory Synapses by Neuroligin-1 versus Neuroligin-2 , 2007, Neuron.

[56]  Ann Marie Craig,et al.  Neurexin–neuroligin signaling in synapse development , 2007, Current Opinion in Neurobiology.

[57]  Arnold R. Kriegstein,et al.  Is there more to gaba than synaptic inhibition? , 2002, Nature Reviews Neuroscience.

[58]  Herwig Baier,et al.  Regulation of axon growth in vivo by activity-based competition , 2005, Nature.

[59]  G. Knott,et al.  GAD67-Mediated GABA Synthesis and Signaling Regulate Inhibitory Synaptic Innervation in the Visual Cortex , 2007, Neuron.

[60]  S. Moss,et al.  GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition , 2008, Nature Reviews Neuroscience.

[61]  Bernhard Lüscher,et al.  The γ2 subunit of GABAA receptors is required for maintenance of receptors at mature synapses , 2003, Molecular and Cellular Neuroscience.

[62]  Y. Yanagawa,et al.  Major Effects of Sensory Experiences on the Neocortical Inhibitory Circuits , 2006, The Journal of Neuroscience.

[63]  E. S. Ruthazer,et al.  Control of Axon Branch Dynamics by Correlated Activity in Vivo , 2003, Science.

[64]  Bernhard Lüscher,et al.  Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin , 1998, Nature Neuroscience.