SOFTWARE TOOLS FOR COMPACTLY SUPPORTED RADIAL BASIS FUNCTIONS

In this paper the use of compactly-supported radial basis functions for surface reconstruction is described. To solve the problem of reconstruction or volume data generation specially designed software is employed. Time performance of the algorithm and numerical error estimation of the reconstruction are also investigated. Thanks to the efficient octree algorithm used in this study, the resulting matrix is a band diagonal matrix that reduces computational cost and permits handling large data sets.

[1]  G. Greiner Surface construction based on variational principles , 1994 .

[2]  Tosiyasu L. Kunii,et al.  Function Representation of Solids Reconstructed from Scattered Surface Points and Contours , 1995, Comput. Graph. Forum.

[3]  Shigeru Muraki,et al.  Volumetric shape description of range data using “Blobby Model” , 1991, SIGGRAPH.

[4]  Vladimir V. Savchenko,et al.  Reconstructing occlusal surfaces of teeth using a genetic algorithm with simulated annealing type selection , 2001, SMA '01.

[5]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[6]  William H. Press,et al.  Numerical recipes in C , 2002 .

[7]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[8]  Richard K. Beatson,et al.  Surface interpolation with radial basis functions for medical imaging , 1997, IEEE Transactions on Medical Imaging.

[9]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[10]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[11]  Alex T. Pang,et al.  Visualizing Sparse Gridded Data Sets , 2000, IEEE Computer Graphics and Applications.

[12]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH 1999.

[13]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[14]  Holger Wendland,et al.  On the smoothness of positive definite and radial functions , 1999 .

[15]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Tosiyasu L. Kunii,et al.  Volume modelling: representations and advanced operations , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[17]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[18]  Baba C. Vemuri,et al.  On Three-Dimensional Surface Reconstruction Methods , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Alan Jennings,et al.  A Compact Storage Scheme for the Solution of Symmetric Linear Simultaneous Equations , 1966, Comput. J..

[20]  Vadim Shapiro,et al.  Real functions for representation of rigid solids , 1994, Comput. Aided Geom. Des..