A Denotational Study of Mobility
暂无分享,去创建一个
[1] Frédéric Peschanski,et al. Modelling and Verifying Mobile Systems Using pi-Graphs , 2009, SOFSEM.
[2] Davide Sangiorgi,et al. Communicating and Mobile Systems: the π-calculus, , 2000 .
[3] Matthew Hennessy,et al. Symbolic Bisimulations , 1995, Theor. Comput. Sci..
[4] Matthew Hennessy,et al. A fully abstract denotational semantics for the pi-calculus , 2002, Theor. Comput. Sci..
[5] C. A. R. Hoare,et al. Communicating sequential processes , 1978, CACM.
[6] Huimin Lin. Complete inference systems for weak bisimulation equivalences in the pi-calculus , 2003, Inf. Comput..
[7] F. Peschanski,et al. Logic for Mobility: A Denotational Approach , 2009 .
[8] Chang Liu,et al. Term rewriting and all that , 2000, SOEN.
[9] A. W. Roscoe. The Three Platonic Models of Divergence-Strict CSP , 2008, ICTAC.
[10] Rocco De Nicola,et al. Testing Equivalence for Mobile Processes , 1995, Inf. Comput..
[11] Frédéric Peschanski,et al. On Linear Time and Congruence in Channel-passing Calculi , 2004 .
[12] Andrew William Roscoe,et al. The Theory and Practice of Concurrency , 1997 .
[13] Peter H. Welch,et al. A CSP Model for Mobile Channels , 2008, CPA.
[14] Marco Pistore,et al. History-Dependent Automata: An Introduction , 2005, SFM.
[15] Bill Roscoe,et al. On the expressiveness of CSP , 2011 .