The Non-Linear Stochastic Wave Equation in High Dimensions

We propose an extension of Walsh's classical martingale measure stochastic integral that makes it possible to integrate a general class of Schwartz distributions, which contains the fundamental solution of the wave equation, even in dimensions greater than 3. This leads to a square-integrable random-field solution to the non-linear stochastic wave equation in any dimension, in the case of a driving noise that is white in time and correlated in space. In the particular case of an affine multiplicative noise, we obtain estimates on $p$-th moments of the solution ($p\geq 1$), and we show that the solution is Holder continuous. The Holder exponent that we obtain is optimal.

[1]  P. E.S. A FEYNMAN-KAC-TYPE FORMULA FOR THE DETERMINISTIC AND STOCHASTIC WAVE EQUATIONS AND OTHER , 2008 .

[2]  A. Millet,et al.  A stochastic wave equation in two space dimension : Smoothness of the law , 1999 .

[3]  Hlawka Theory of the integral , 1939 .

[4]  R. Durrett Probability: Theory and Examples , 1993 .

[5]  O. Lévêque,et al.  Second-order hyperbolic S.P.D.E."s driven by homogeneous Gaussian noise on a hyperplane , 2005 .

[6]  L. Schwartz Théorie des distributions , 1966 .

[7]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[8]  M. Rao Bimeasures and harmonizable processes (Analysis, classification, and representation) , 1989 .

[9]  Existence and Smoothness of the Density for Spatially Homogeneous SPDEs , 2007, math/0702312.

[10]  Anja Sturm,et al.  Stochastic Integration and Differential Equations. Second Edition. , 2005 .

[11]  F. Trèves Basic Linear Partial Differential Equations , 1975 .

[12]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[13]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .

[14]  O. Lévêque,et al.  Second-order linear hyperbolic SPDEs driven by isotropic Gaussian noise on a sphere , 2004 .

[15]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[16]  Stig Larsson,et al.  Introduction to stochastic partial differential equations , 2008 .

[17]  F. Trèves Topological vector spaces, distributions and kernels , 1967 .

[18]  T. P. Srinivasan,et al.  ON THE BOCHNER INTEGRAL , 1973 .

[19]  M. Sanz-Solé,et al.  Holder-Sobolev Regularity of the Solution to the Stochastic Wave Equation in Dimension Three , 2009 .

[20]  Ian Smith,et al.  Introduction to Partial Differential Equations , 2006 .

[21]  Yoshikazu Giga,et al.  Nonlinear Partial Differential Equations , 2004 .

[22]  H\"lder-Sobolev regularity of the solution to the stochastic wave equation in dimension 3 , 2005, math/0512540.

[23]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[24]  Robert C. Dalang,et al.  EXTENDING MARTINGALE MEASURE STOCHASTIC INTEGRAL WITH APPLICATIONS TO SPATIALLY HOMOGENEOUS S.P.D.E’S , 1999 .

[25]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[26]  P. Levy Processus stochastiques et mouvement brownien , 1948 .

[27]  Robert C. Dalang,et al.  Corrections to: Extending the martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E. 's , 1999 .

[28]  N. Frangos,et al.  The stochastic wave equation in two spatial dimensions , 1998 .

[29]  Lluís Quer-Sardanyons,et al.  A stochastic wave equation in dimension 3: smoothness of the law , 2004 .

[30]  P. Protter Stochastic integration and differential equations , 1990 .

[31]  Lluís Quer-Sardanyons,et al.  Absolute continuity of the law of the solution to the 3-dimensional stochastic wave equation , 2004 .

[32]  Robert C. Dalang,et al.  Some Non-Linear S.P.D.E's That Are Second Order In Time , 2002 .

[33]  S. Peszat The Cauchy problem for a nonlinear stochastic wave equation in any dimension , 2002 .