A High Order Method for the Approximation of Integrals Over Implicitly Defined Hypersurfaces

We introduce a novel method to compute approximations of integrals over implicitly defined hypersurfaces. The new method is based on a weak formulation in $L^2(0,1)$ that uses the coarea formula to circumvent an explicit integration over the hypersurfaces. As such it is possible to use standard quadrature rules in the spirit of hp/spectral finite element methods, and the expensive computation of explicit hypersurface parametrizations is avoided. We derive error estimates showing that high order convergence can be achieved provided the integrand and the hypersurface defining function are sufficiently smooth. The theoretical results are supplemented by numerical experiments including an application for plasma modeling in nuclear fusion.

[1]  G. Burton Sobolev Spaces , 2013 .

[2]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  V. Shafranov On Magnetohydrodynamical Equilibrium Configurations , 1958 .

[5]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[6]  T. Fries,et al.  Higher‐order accurate integration of implicit geometries , 2016 .

[7]  Jörg Grande,et al.  Analysis of Highly Accurate Finite Element Based Algorithms for Computing Distances to Level Sets , 2017, SIAM J. Numer. Anal..

[8]  B. Engquist,et al.  Discretization of Dirac delta functions in level set methods , 2005 .

[9]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[10]  Kendall E. Atkinson,et al.  Numerical evaluation of line integrals , 1993 .

[11]  Stephen C. Jardin,et al.  Computational Methods in Plasma Physics , 2010 .

[12]  Gudmundur Vigfússon The queer differential equations for adiabatic compression of plasma , 1979 .

[13]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[14]  Frédéric Gibou,et al.  Geometric integration over irregular domains with application to level-set methods , 2007, J. Comput. Phys..

[15]  Arthur W. Toga,et al.  Surface mapping brain function on 3D models , 1990, IEEE Computer Graphics and Applications.

[16]  K. Schmidt,et al.  Computation of the band structure of two-dimensional photonic crystals with hp finite elements , 2009 .

[17]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .

[18]  Stefaan Poedts,et al.  Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2004 .

[19]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[20]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[21]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[22]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[23]  P. Knabner,et al.  Numerical Methods for Elliptic and Parabolic Partial Differential Equations , 2003, Texts in Applied Mathematics.

[24]  Xiangmin Jiao,et al.  High-Order Numerical Integration over Discrete Surfaces , 2012, SIAM J. Numer. Anal..

[25]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[26]  J. Lions,et al.  Sur Une Classe D’Espaces D’Interpolation , 1964 .

[27]  P. Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, VVS.

[28]  Christoph Lehrenfeld,et al.  High order unfitted finite element methods on level set domains using isoparametric mappings , 2015, ArXiv.

[29]  Christian Lage,et al.  Concepts: An object-oriented software package for partial differential equations , 2002 .

[30]  Harold Grad,et al.  HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .

[31]  Harold Grad,et al.  Classical Diffusion in a Tokomak , 1970 .

[32]  T. O’Neil Geometric Measure Theory , 2002 .

[33]  R. I. Saye,et al.  High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles , 2015, SIAM J. Sci. Comput..

[34]  Hong Yi,et al.  A survey of the marching cubes algorithm , 2006, Comput. Graph..

[35]  Kersten Schmidt,et al.  On high-order FEM applied to canonical scattering problems in plasmonics , 2011 .