A High Order Method for the Approximation of Integrals Over Implicitly Defined Hypersurfaces
暂无分享,去创建一个
[1] G. Burton. Sobolev Spaces , 2013 .
[2] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[3] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[4] V. Shafranov. On Magnetohydrodynamical Equilibrium Configurations , 1958 .
[5] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[6] T. Fries,et al. Higher‐order accurate integration of implicit geometries , 2016 .
[7] Jörg Grande,et al. Analysis of Highly Accurate Finite Element Based Algorithms for Computing Distances to Level Sets , 2017, SIAM J. Numer. Anal..
[8] B. Engquist,et al. Discretization of Dirac delta functions in level set methods , 2005 .
[9] A. G. Greenhill,et al. Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .
[10] Kendall E. Atkinson,et al. Numerical evaluation of line integrals , 1993 .
[11] Stephen C. Jardin,et al. Computational Methods in Plasma Physics , 2010 .
[12] Gudmundur Vigfússon. The queer differential equations for adiabatic compression of plasma , 1979 .
[13] William E. Lorensen,et al. Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.
[14] Frédéric Gibou,et al. Geometric integration over irregular domains with application to level-set methods , 2007, J. Comput. Phys..
[15] Arthur W. Toga,et al. Surface mapping brain function on 3D models , 1990, IEEE Computer Graphics and Applications.
[16] K. Schmidt,et al. Computation of the band structure of two-dimensional photonic crystals with hp finite elements , 2009 .
[17] A. Bondeson,et al. The CHEASE code for toroidal MHD equilibria , 1996 .
[18] Stefaan Poedts,et al. Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2004 .
[19] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[20] Maciej Paszyński,et al. Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .
[21] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[22] L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .
[23] P. Knabner,et al. Numerical Methods for Elliptic and Parabolic Partial Differential Equations , 2003, Texts in Applied Mathematics.
[24] Xiangmin Jiao,et al. High-Order Numerical Integration over Discrete Surfaces , 2012, SIAM J. Numer. Anal..
[25] L. Demkowicz. One and two dimensional elliptic and Maxwell problems , 2006 .
[26] J. Lions,et al. Sur Une Classe D’Espaces D’Interpolation , 1964 .
[27] P. Shirley,et al. A polygonal approximation to direct scalar volume rendering , 1990, VVS.
[28] Christoph Lehrenfeld,et al. High order unfitted finite element methods on level set domains using isoparametric mappings , 2015, ArXiv.
[29] Christian Lage,et al. Concepts: An object-oriented software package for partial differential equations , 2002 .
[30] Harold Grad,et al. HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .
[31] Harold Grad,et al. Classical Diffusion in a Tokomak , 1970 .
[32] T. O’Neil. Geometric Measure Theory , 2002 .
[33] R. I. Saye,et al. High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles , 2015, SIAM J. Sci. Comput..
[34] Hong Yi,et al. A survey of the marching cubes algorithm , 2006, Comput. Graph..
[35] Kersten Schmidt,et al. On high-order FEM applied to canonical scattering problems in plasmonics , 2011 .