Constraint satisfaction with infinite domains

Many constraint satisfaction problems have a natural formulation as a homomorphism problem. For a fixed relational structure Gamma we consider the following computational problem: Given a structure S with the same relational signature as Gamma, is there a homomorphism from S to Gamma? This problem is known as the constraint satisfaction problem CSP(Gamma) for the so-called template Gamma and is intensively studied for relational structures Gamma with a finite domain. However, many constraint satisfaction problems can not be formulated with a finite template. If we allow arbitrary infinite templates, constraint satisfaction is very expressive. We show that it contains undecidable problems, even if the constraint language is binary. In general, a computational problem can be described as the constraint satisfaction problem of an infinite template if and only if it is closed under inverse homomorphisms and disjoint unions. It is also easy to see that we can restrict our attention to countable templates. In this thesis we study the computational complexity of constraint satisfaction with templates that are omega-categorical. A structure Gamma is omega-categorical if all countable models of the first-order theory of Gamma are isomorphic to Gamma. This concept is central and well-studied in model-theory. On the one hand, omega-categoricity is a rather strong model-theoretic assumption on a relational structure, and we can use them to show that many techniques for constraint satisfaction with finite templates extend to omega-categorical templates.

[1]  Mike Paterson,et al.  Linear unification , 1976, STOC '76.

[2]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[3]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[4]  C. Ward Henson,et al.  Countable homogeneous relational structures and ℵ0-categorical theories , 1972, Journal of Symbolic Logic.

[5]  Rina Dechter,et al.  From Local to Global Consistency , 1990, Artif. Intell..

[6]  Iain A. Stewart,et al.  Dichotomies for classes of homomorphism problems involving unary functions , 2004, Theor. Comput. Sci..

[7]  Phokion G. Kolaitis,et al.  Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics , 2002, CP.

[8]  Kurt Mehlhorn,et al.  An efficient algorithm for the configuration problem of dominance graphs , 2001, SODA '01.

[9]  Tomás Feder,et al.  Homomorphism closed vs. existential positive , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[10]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[11]  Tomás Feder,et al.  Monotone monadic SNP and constraint satisfaction , 1993, STOC.

[12]  Johan Bos,et al.  Predicate logic unplugged , 1996 .

[13]  Dan Flickinger,et al.  Minimal Recursion Semantics: An Introduction , 2005 .

[14]  Madhu Sudan,et al.  A Geometric Approach to Betweenness , 1995, ESA.

[15]  Peter Jeavons,et al.  The complexity of maximal constraint languages , 2001, STOC '01.

[16]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[17]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[18]  Stefan Thater,et al.  Parsing with Tree Descriptions: a constraint-based approach , 1999 .

[19]  G. Cherlin,et al.  The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous N-Tournaments , 1998 .

[20]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[21]  Soumen Chakrabarti Date $date$ , 1962 .

[22]  M. Steel The complexity of reconstructing trees from qualitative characters and subtrees , 1992 .

[23]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[24]  Martin E. Dyer,et al.  The complexity of counting graph homomorphisms , 2000, Random Struct. Algorithms.

[25]  Phokion G. Kolaitis,et al.  A Game-Theoretic Approach to Constraint Satisfaction , 2000, AAAI/IAAI.

[26]  Brenda J. Latka,et al.  Finitely constrained classes of homogeneous directed graphs , 1994, Journal of Symbolic Logic (JSL).

[27]  Eric Rosen,et al.  Some Aspects of Model Theory and Finite Structures , 2002, Bulletin of Symbolic Logic.

[28]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[29]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[30]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..

[31]  Nicholas C. Wormald,et al.  The Difficulty of Constructing a Leaf-labelled Tree Including or Avoiding Given Subtrees , 2000, Discret. Appl. Math..

[32]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[33]  William W. Tait,et al.  A counterexample to a conjecture of Scott and Suppes , 1959, Journal of Symbolic Logic.

[34]  Yuri Gurevich,et al.  Toward logic tailored for computational complexity , 1984 .

[35]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[36]  Bruce L. Bauslaugh Cores and Compactness of Infinite Directed Graphs , 1996, J. Comb. Theory, Ser. B.

[37]  R. Woodrow,et al.  Countable ultrahomogeneous undirected graphs , 1980 .

[38]  Manuel Bodirsky,et al.  Pure Dominance Constraints , 2002, STACS.

[39]  Alistair H. Lachlan Stable Finitely Homogeneous Structures: A Survey , 1997 .

[40]  Ronald Fagin,et al.  Probabilities on finite models , 1976, Journal of Symbolic Logic.

[41]  Joachim Niehren,et al.  The Constraint Language for Lambda Structures , 2001, J. Log. Lang. Inf..

[42]  Rajeev Motwani,et al.  A combinatorial algorithm for MAX CSP , 2003, Inf. Process. Lett..

[43]  Joachim Niehren,et al.  Dominance Constraints: Algorithms and Complexity , 1998, LACL.

[44]  Yuri Matiyasevich,et al.  Hilbert’s tenth problem , 2019, 100 Years of Math Milestones.

[45]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.

[46]  Iain A. Stewart,et al.  Some problems not definable using structure homomorphisms , 2003, Ars Comb..

[47]  Franz Baader,et al.  Combining Constraint Solving , 2001, CCL.

[48]  D. Bryant Building trees, hunting for trees, and comparing trees : theory and methods in phylogenetic analysis , 1997 .

[49]  Kurt Mehlhorn,et al.  A Polynomial-Time Fragment of Dominance Constraints , 2000, ACL.

[50]  Kurt Mehlhorn,et al.  An efficient graph algorithm for dominance constraints , 2003, J. Algorithms.

[51]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[52]  Tom Cornell On Determining the Consistency of Partial Descriptions of Trees , 1994, ACL.

[53]  A. Lachlan,et al.  Stable finitely homogeneous structures , 1986 .

[54]  Ph. G. Kolaitis,et al.  _{+1}-free graphs: asymptotic structure and a 0-1 law , 1987 .

[55]  Justin Pearson,et al.  Closure Functions and Width 1 Problems , 1999, CP.

[56]  Phokion G. Kolaitis,et al.  Closures and dichotomies for quantified constraints , 2006, Electron. Colloquium Comput. Complex..

[57]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[58]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[59]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .

[60]  Hans Jürgen Prömel,et al.  Lectures on Proof Verification and Approximation Algorithms , 1998, Lecture Notes in Computer Science.

[61]  Andrei A. Bulatov,et al.  The complexity of partition functions , 2005, Theor. Comput. Sci..

[62]  Peter Jeavons,et al.  Constraint Satisfaction Problems and Finite Algebras , 2000, ICALP.

[63]  Joachim Niehren,et al.  Bridging the Gap Between Underspecification Formalisms: Minimal Recursion Semantics as Dominance Constraints , 2003, ACL.

[64]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[65]  Víctor Dalmau,et al.  A new tractable class of constraint satisfaction problems , 2005, Annals of Mathematics and Artificial Intelligence.

[66]  Mitchell P. Marcus,et al.  D-Theory: Talking about Talking about Trees , 1983, ACL.

[67]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[68]  Demetrios Achlioptas,et al.  The complexity of G-free colourability , 1997, Discret. Math..

[69]  K. Vijay-Shanker,et al.  Reasoning with Descriptions of Trees , 1992, ACL.

[70]  Jaroslav Nešetřil,et al.  Note on projective graphs , 2004 .

[71]  Peter Jeavons,et al.  Quantified Constraints: Algorithms and Complexity , 2003, CSL.

[72]  David Harel,et al.  Structure and complexity of relational queries , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[73]  Martin C. Cooper,et al.  Identifying Efficiently Solvable Cases of Max CSP , 2004, STACS.

[74]  Robert Cowen,et al.  G-FREE COLORABILITY AND THE BOOLEAN PRIME IDEAL THEOREM , 2003 .

[75]  Giuseppe F. Italiano,et al.  Fully dynamic transitive closure: breaking through the O(n/sup 2/) barrier , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[76]  Y. Gurevich On Finite Model Theory , 1990 .

[77]  Monika Henzinger,et al.  Fully dynamic biconnectivity and transitive closure , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[78]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[79]  Phokion G. Kolaitis,et al.  0-1 laws and decision problems for fragments of second-order logic , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[80]  James Rogers,et al.  OBTAINING TREES FROM THEIR DESCRIPTIONS: AN APPLICATION TO TREE‐ADJOINING GRAMMARS , 1994, Comput. Intell..

[81]  S. Shelah,et al.  Universal Graphs with Forbidden Subgraphs and Algebraic Closure , 1998, math/9809202.

[82]  Rolf Backofen,et al.  A first-order axiomatization of the theory of finite trees , 1995, J. Log. Lang. Inf..

[83]  Jaroslav Nesetril,et al.  Constraint Satisfaction with Countable Homogeneous Templates , 2003, J. Log. Comput..

[84]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[85]  Manfred Droste,et al.  Structure of partially ordered sets with transitive automorphism groups , 1985 .

[86]  Alexander Thiel A linear time algorithm for the configuration problem of dominance graphs , 2004 .

[87]  John C. Mitchell,et al.  Algorithmic aspects of type inference with subtypes , 1992, POPL '92.

[88]  Phokion G. Kolaitis,et al.  On the expressive power of datalog: tools and a case study , 1990, J. Comput. Syst. Sci..

[89]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[90]  A. H. Lachlan,et al.  Countable homogeneous tournaments , 1984 .

[91]  Mikkel Thorup,et al.  Decremental dynamic connectivity , 1997, SODA '97.

[92]  Naomi Nishimura,et al.  Characterizing the Complexity of Subgraph Isomorphism for Graphs of Bounded Path-Width , 1996, STACS.

[93]  Peter J. Cameron,et al.  Orbits of Permutation Groups on Unordered Sets, II , 1978 .

[94]  Joachim Niehren,et al.  A new algorithm for normal dominance constraints , 2004, SODA '04.

[95]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[96]  Daniel Král,et al.  Coloring Mixed Hypertrees , 2000, WG.

[97]  Surajit Chaudhuri,et al.  On the equivalence of recursive and nonrecursive datalog programs , 1992, J. Comput. Syst. Sci..

[98]  James H. Schmerl,et al.  Countable homogeneous partially ordered sets , 1979 .

[99]  Alfred V. Aho,et al.  Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of Relational Expressions , 1981, SIAM J. Comput..

[100]  A. Leaf GRAPH THEORY AND PROBABILITY , 1957 .

[101]  Peter Jeavons,et al.  Reasoning about temporal relations: The tractable subalgebras of Allen's interval algebra , 2003, JACM.

[102]  Eugene C. Freuder Complexity of K-Tree Structured Constraint Satisfaction Problems , 1990, AAAI.

[103]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[104]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[105]  Jaroslav Nesetril,et al.  Note on projective graphs , 2004, J. Graph Theory.

[106]  Phokion G. Kolaitis,et al.  Conjunctive-query containment and constraint satisfaction , 1998, PODS.

[107]  Bonnie L. Webber,et al.  Describing discourse semantics , 1998, TAG+.

[108]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[109]  Martin C. Cooper An Optimal k-Consistency Algorithm , 1989, Artif. Intell..

[110]  Eugene C. Freuder Synthesizing constraint expressions , 1978, CACM.

[111]  Jaroslav Nesetril,et al.  Duality Theorems for Finite Structures (Characterising Gaps and Good Characterisations) , 2000, J. Comb. Theory, Ser. B.

[112]  Peter van Beek,et al.  Local and Global Relational Consistency , 1995, Theor. Comput. Sci..

[113]  Eugene C. Freuder,et al.  The Complexity of Constraint Satisfaction Revisited , 1993, Artif. Intell..

[114]  Manfred Droste,et al.  Automorphism groups of homogeneous semilinear orders: normal subgroups and commutators , 1991 .

[115]  Sven Thiel Efficient algorithms for constraint propagation and for processing tree descriptions , 2004 .

[116]  Bruce L. Bauslaugh Core-like properties of infinite graphs and structures , 1995, Discret. Math..

[117]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[118]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.