Centroidal Voronoi Tessellations: Applications and Algorithms

A centroidal Voronoi tessellation is a Voronoi tessellation whose generating points are the centroids (centers of mass) of the corresponding Voronoi regions. We give some applications of such tessellations to problems in image compression, quadrature, finite difference methods, distribution of resources, cellular biology, statistics, and the territorial behavior of animals. We discuss methods for computing these tessellations, provide some analyses concerning both the tessellations and the methods for their determination, and, finally, present the results of some numerical experiments.

[1]  Przemyslaw Prusinkiewicz,et al.  An algorithm for multidimensional data clustering , 1988, TOMS.

[2]  Robert M. Gray,et al.  Locally Optimal Block Quantizer Design , 1980, Inf. Control..

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[5]  R. Nicolaides Direct discretization of planar div-curl problems , 1992 .

[6]  P. Eiseman,et al.  Adaptive grid generation , 1987 .

[7]  W. Sheppard On the Calculation of the most Probable Values of Frequency‐Constants, for Data arranged according to Equidistant Division of a Scale , 1897 .

[8]  Mary Inaba,et al.  Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering: (extended abstract) , 1994, SCG '94.

[9]  M. Tanemura,et al.  Geometrical models of territory. I. Models for synchronous and asynchronous settlement of territories. , 1980, Journal of theoretical biology.

[10]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[11]  Herbert Witte,et al.  An efficient vector quantizer providing globally optimal solutions , 1998, IEEE Trans. Signal Process..

[12]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[13]  Donald J. Newman,et al.  The hexagon theorem , 1982, IEEE Trans. Inf. Theory.

[14]  JOHN C. KIEFFER,et al.  Uniqueness of locally optimal quantizer for log-concave density and convex error weighting function , 1983, IEEE Trans. Inf. Theory.

[15]  Michael Randolph Garey,et al.  The complexity of the generalized Lloyd - Max problem , 1982, IEEE Trans. Inf. Theory.

[16]  Shokri Z. Selim,et al.  K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[18]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[19]  Atsuo Suzuki,et al.  APPROXIMATION OF A TESSELLATION OF THE PLANE BY A VORONOI DIAGRAM , 1986 .

[20]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[21]  Daniele D. Giusto,et al.  Polynomial approximation and vector quantization: a region-based integration , 1995, IEEE Trans. Commun..

[22]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[23]  Fred J. Hickernell,et al.  The asymptotic efficiency of randomized nets for quadrature , 1999, Math. Comput..

[24]  J. Friedman Exploratory Projection Pursuit , 1987 .

[25]  Alexander V. Trushkin,et al.  On the design of an optimal quantizer , 1993, IEEE Trans. Inf. Theory.

[26]  Tetsuo Asano,et al.  Clustering algorithms based on minimum and maximum spanning trees , 1988, SCG '88.

[27]  Ian H. Witten,et al.  A FAST K-MEANS TYPE CLUSTERING ALGORITHM , 1985 .

[28]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[29]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[30]  Hiroshi Imai,et al.  Geometric clustering with applications , 1996 .

[31]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[32]  J. Hartigan Asymptotic Distributions for Clustering Criteria , 1978 .

[33]  Paul S. Heckbert Color image quantization for frame buffer display , 1998 .

[34]  C.H. Sequin,et al.  Optimal adaptive k-means algorithm with dynamic adjustment of learning rate , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[35]  Thomas N. L. Patterson,et al.  The evaluation of multidimensional integrals , 1968, Comput. J..

[36]  Robert D. Clark,et al.  OptiSim: An Extended Dissimilarity Selection Method for Finding Diverse Representative Subsets , 1997, J. Chem. Inf. Comput. Sci..

[37]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[38]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[39]  H. Honda Geometrical models for cells in tissues. , 1983, International review of cytology.

[40]  Kazuo Murota,et al.  A fast Voronoi-diagram algorithm with applications to geographical optimization problems , 1984 .

[41]  V. John Mathews Vector quantization of images using the L/sub /spl infin// distortion measure , 1995, Proceedings., International Conference on Image Processing.

[42]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[43]  Masami Hasegawa,et al.  On the pattern of space division by territories , 1976 .

[44]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[45]  P. Hall On Polynomial-Based Projection Indices for Exploratory Projection Pursuit , 1989 .

[46]  G. Celeux,et al.  A Classification EM algorithm for clustering and two stochastic versions , 1992 .

[47]  Peter R. Eiseman Solution adaptive grid generation , 1983 .

[48]  Hiroshi Imai,et al.  Experimental results of randomized clustering algorithm , 1996, SCG '96.

[49]  G. Wise,et al.  Convergence of Vector Quantizers with Applications to Optimal Quantization , 1984 .

[50]  D. Pollard Strong Consistency of $K$-Means Clustering , 1981 .

[51]  Kelly R. Laflin,et al.  Dynamic Grid Adaption and Grid Quality , 1998 .

[52]  Anargyros Papageorgiou,et al.  Faster Evaluation of Multidimensional Integrals , 2000, ArXiv.

[53]  M. A. Wong Asymptotic properties of univariate sample k-means clusters , 2018 .

[54]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[55]  Myoungshic Jhun,et al.  BOOTSTRAPPING K -MEANS CLUSTERING , 1990 .

[56]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[57]  Hiroshi Imai,et al.  Efficient Algorithms for Variance-Based k-Clustering , 1993 .

[58]  D. Pollard A Central Limit Theorem for $k$-Means Clustering , 1982 .

[59]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[60]  H. Honda Description of cellular patterns by Dirichlet domains: the two-dimensional case. , 1978, Journal of theoretical biology.