Dual‐mixed hp finite element model for elastic cylindrical shells

A dimensionally reduced cylindrical shell model using a three‐field complementary energy‐based Hellinger–Reissner's variational principle of non‐symmetric stresses, rotations, and displacements is presented. An important property of the shell model is that the classical kinematical hypotheses regarding the deformation of the normal to the shell mid‐surface are not applied. A dual‐mixed hp finite element model with stable polynomial stress‐ and displacement interpolation and C0 continuous normal components of stresses is constructed and presented for the bending‐shearing problem, using unmodified three‐dimensional inverse stress‐strain relations for linearly elastic materials. It is shown through an example that the convergences in the energy norm as well as in the maximum norm of stresses and displacements are rapid for both h‐extension and p‐approximation, not only for thin but also for moderately thick shells loaded axisymmetrically, even if the Poisson ratio is close to the incompressibility limit of 0.5.

[1]  E. Reissner On a Variational Theorem in Elasticity , 1950 .

[2]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[3]  P. M. Naghdi,et al.  FOUNDATIONS OF ELASTIC SHELL THEORY , 1962 .

[4]  E. Reissner A note on variational principles in elasticity , 1965 .

[5]  B. D. Veubeke,et al.  A new variational principle for finite elastic displacements , 1972 .

[6]  B. D. Veubeke,et al.  Discretization of stress fields in the finite element method , 1976 .

[7]  S. Atluri,et al.  Finite Elasticity Solutions Using Hybrid Finite Elements Based on a Complementary Energy Principle , 1978 .

[8]  J. Thomas,et al.  Equilibrium finite elements for the linear elastic problem , 1979 .

[9]  S. Atluri,et al.  Finite Elasticity Solutions Using Hybrid Finite Elements Based on a Complementary Energy Principle—Part 2: Incompressible Materials , 1979 .

[10]  T. Belytschko,et al.  Shear and membrane locking in curved C0 elements , 1983 .

[11]  S. Atluri ALTERNATE STRESS AND CONJUGATE STRAIN MEASURES, AND MIXED VARIATIONAL FORMULATIONS INVOLVING RIGID ROTATIONS, FOR COMPUTATIONAL ANALYSES OF FINITELY DEFORMED SOLIDS, WITH APPLICATION TO PLATES AND SHELLS-I , 1984 .

[12]  S. Atluri,et al.  Development and testing of stable, invariant, isoparametric curvilinear 2- and 3-D hybrid-stress elements , 1984 .

[13]  S. Atluri,et al.  Hybrid stress finite elements for large deformations of inelastic solids , 1984 .

[14]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[15]  S. Atluri,et al.  On the existence and stability conditions for mixed-hybrid finite element solutions based on Reissner’s variational principle , 1985 .

[16]  S. Atluri,et al.  Large displacement analysis of plates by a stress-based finite element approach , 1986 .

[17]  R. Stenberg On the construction of optimal mixed finite element methods for the linear elasticity problem , 1986 .

[18]  D. Arnold,et al.  A new mixed formulation for elasticity , 1988 .

[19]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[20]  E. Stein,et al.  Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity , 1990 .

[21]  D. Arnold Mixed finite element methods for elliptic problems , 1990 .

[22]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[23]  S. Atluri,et al.  Formulation of a membrane finite element with drilling degrees of freedom , 1992 .

[24]  J. Pitkäranta The problem of membrane locking in finite element analysis of cylindrical shells , 1992 .

[25]  A. Cazzani,et al.  Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes , 1993 .

[26]  E. Berto´ti Complementary energy method for cylindrical shells using second order stress functions , 1993 .

[27]  E. Bertóti Indeterminacy of first order stress functions and the stress- and rotation-based formulation of linear elasticity , 1994 .

[28]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[29]  Coupling of adaptively refined dual mixed finite elements and boundary elements in linear elasticity , 1995 .

[30]  A. Cazzani,et al.  On some mixed finite element methods for plane membrane problems , 1997 .

[31]  Douglas N. Arnold,et al.  Locking-free finite element methods for shells , 1997, Math. Comput..

[32]  C. Schwab,et al.  Analysis of Membrane Locking in hp FEM for a Cylindrical Shell , 1998 .

[33]  D. Chapelle,et al.  Stabilized Finite Element Formulations for Shells in a Bending Dominated State , 1998 .

[34]  Manil Suri,et al.  Upper and lower error bounds for plate-bending finite elements , 2000, Numerische Mathematik.

[35]  E. Bertóti Dual-mixed hp finite element methods using first-order stress functions and rotations , 2000 .

[36]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[37]  E. Bertóti Dual‐mixed p and hp finite elements for elastic membrane problems , 2002 .

[38]  F. Gruttmann,et al.  A stabilized one‐point integrated quadrilateral Reissner–Mindlin plate element , 2004 .

[39]  D. Mijuca On hexahedral finite element HC8/27 in elasticity , 2004 .

[40]  F. Gruttmann,et al.  A linear quadrilateral shell element with fast stiffness computation , 2005 .

[41]  M. Suri Stable hp mixed finite elements based on the Hellinger-Reissner principle , 2005 .

[42]  Douglas N. Arnold,et al.  Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..

[43]  L. Demkowicz,et al.  Mixed hp-Finite Element Method for Linear Elasticity with Weakly Imposed Symmetry: Stability Analysis , 2009, SIAM J. Numer. Anal..

[44]  A. Ibrahimbegovic Nonlinear Solid Mechanics , 2009 .