Dual‐mixed hp finite element model for elastic cylindrical shells
暂无分享,去创建一个
[1] E. Reissner. On a Variational Theorem in Elasticity , 1950 .
[2] S. Timoshenko,et al. THEORY OF PLATES AND SHELLS , 1959 .
[3] P. M. Naghdi,et al. FOUNDATIONS OF ELASTIC SHELL THEORY , 1962 .
[4] E. Reissner. A note on variational principles in elasticity , 1965 .
[5] B. D. Veubeke,et al. A new variational principle for finite elastic displacements , 1972 .
[6] B. D. Veubeke,et al. Discretization of stress fields in the finite element method , 1976 .
[7] S. Atluri,et al. Finite Elasticity Solutions Using Hybrid Finite Elements Based on a Complementary Energy Principle , 1978 .
[8] J. Thomas,et al. Equilibrium finite elements for the linear elastic problem , 1979 .
[9] S. Atluri,et al. Finite Elasticity Solutions Using Hybrid Finite Elements Based on a Complementary Energy Principle—Part 2: Incompressible Materials , 1979 .
[10] T. Belytschko,et al. Shear and membrane locking in curved C0 elements , 1983 .
[11] S. Atluri. ALTERNATE STRESS AND CONJUGATE STRAIN MEASURES, AND MIXED VARIATIONAL FORMULATIONS INVOLVING RIGID ROTATIONS, FOR COMPUTATIONAL ANALYSES OF FINITELY DEFORMED SOLIDS, WITH APPLICATION TO PLATES AND SHELLS-I , 1984 .
[12] S. Atluri,et al. Development and testing of stable, invariant, isoparametric curvilinear 2- and 3-D hybrid-stress elements , 1984 .
[13] S. Atluri,et al. Hybrid stress finite elements for large deformations of inelastic solids , 1984 .
[14] J. Douglas,et al. PEERS: A new mixed finite element for plane elasticity , 1984 .
[15] S. Atluri,et al. On the existence and stability conditions for mixed-hybrid finite element solutions based on Reissner’s variational principle , 1985 .
[16] S. Atluri,et al. Large displacement analysis of plates by a stress-based finite element approach , 1986 .
[17] R. Stenberg. On the construction of optimal mixed finite element methods for the linear elasticity problem , 1986 .
[18] D. Arnold,et al. A new mixed formulation for elasticity , 1988 .
[19] R. Stenberg. A family of mixed finite elements for the elasticity problem , 1988 .
[20] E. Stein,et al. Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity , 1990 .
[21] D. Arnold. Mixed finite element methods for elliptic problems , 1990 .
[22] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[23] S. Atluri,et al. Formulation of a membrane finite element with drilling degrees of freedom , 1992 .
[24] J. Pitkäranta. The problem of membrane locking in finite element analysis of cylindrical shells , 1992 .
[25] A. Cazzani,et al. Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes , 1993 .
[26] E. Berto´ti. Complementary energy method for cylindrical shells using second order stress functions , 1993 .
[27] E. Bertóti. Indeterminacy of first order stress functions and the stress- and rotation-based formulation of linear elasticity , 1994 .
[28] Ivo Babuska,et al. The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..
[29] Coupling of adaptively refined dual mixed finite elements and boundary elements in linear elasticity , 1995 .
[30] A. Cazzani,et al. On some mixed finite element methods for plane membrane problems , 1997 .
[31] Douglas N. Arnold,et al. Locking-free finite element methods for shells , 1997, Math. Comput..
[32] C. Schwab,et al. Analysis of Membrane Locking in hp FEM for a Cylindrical Shell , 1998 .
[33] D. Chapelle,et al. Stabilized Finite Element Formulations for Shells in a Bending Dominated State , 1998 .
[34] Manil Suri,et al. Upper and lower error bounds for plate-bending finite elements , 2000, Numerische Mathematik.
[35] E. Bertóti. Dual-mixed hp finite element methods using first-order stress functions and rotations , 2000 .
[36] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[37] E. Bertóti. Dual‐mixed p and hp finite elements for elastic membrane problems , 2002 .
[38] F. Gruttmann,et al. A stabilized one‐point integrated quadrilateral Reissner–Mindlin plate element , 2004 .
[39] D. Mijuca. On hexahedral finite element HC8/27 in elasticity , 2004 .
[40] F. Gruttmann,et al. A linear quadrilateral shell element with fast stiffness computation , 2005 .
[41] M. Suri. Stable hp mixed finite elements based on the Hellinger-Reissner principle , 2005 .
[42] Douglas N. Arnold,et al. Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..
[43] L. Demkowicz,et al. Mixed hp-Finite Element Method for Linear Elasticity with Weakly Imposed Symmetry: Stability Analysis , 2009, SIAM J. Numer. Anal..
[44] A. Ibrahimbegovic. Nonlinear Solid Mechanics , 2009 .