On the forbidden induced subgraph sandwich problem

Abstract We consider the sandwich problem, a generalization of the recognition problem introduced by Golumbic et al. (1995) [15] , with respect to classes of graphs defined by excluding induced subgraphs. We prove that the sandwich problem corresponding to excluding a chordless cycle of fixed length k is NP-complete. We prove that the sandwich problem corresponding to excluding K r ∖ e for fixed r is polynomial. We prove that the sandwich problem corresponding to 3 P C ( ⋅ , ⋅ ) -free graphs is NP-complete. These complexity results are related to the classification of a long-standing open problem: the sandwich problem corresponding to perfect graphs.

[1]  Hazel Everett,et al.  The Homogeneous Set Sandwich Problem , 1998, Inf. Process. Lett..

[2]  Kristina Vuskovic,et al.  Even-hole-free graphs that do not contain diamonds: A structure theorem and its consequences , 2009, J. Comb. Theory, Ser. B.

[3]  Russell Merris,et al.  Split graphs , 2003, Eur. J. Comb..

[4]  Sulamita Klein,et al.  The Graph Sandwich Problem for P4-sparse graphs , 2009, Discret. Math..

[5]  Celina M. H. de Figueiredo,et al.  Helly property, clique raphs, complementary graph classes, and sandwich problems , 2010, Journal of the Brazilian Computer Society.

[6]  Kristina Vuskovic,et al.  Decomposition of even-hole-free graphs with star cutsets and 2-joins , 2013, J. Comb. Theory, Ser. B.

[7]  Bruce A. Reed,et al.  beta-Perfect Graphs , 1996, J. Comb. Theory, Ser. B.

[8]  Martin Charles Golumbic,et al.  Graph Sandwich Problems , 1995, J. Algorithms.

[9]  Paul D. Seymour,et al.  The three-in-a-tree problem , 2010, Comb..

[10]  Gérard Cornuéjols,et al.  Even‐hole‐free graphs part II: Recognition algorithm , 2002, J. Graph Theory.

[11]  Celina M. H. de Figueiredo,et al.  The polynomial dichotomy for three nonempty part sandwich problems , 2010, Discret. Appl. Math..

[12]  Bert Gerards,et al.  A Theorem of Truemper , 1998, Comb..

[13]  Paul D. Seymour,et al.  Recognizing Berge Graphs , 2005, Comb..

[14]  Da Silva,et al.  Even-hole-free graphs , 2008 .

[15]  Gérard Cornuéjols,et al.  Even and odd holes in cap-free graphs , 1999 .

[16]  Dieter Kratsch,et al.  On the Recognition of Probe Graphs of Some Self-Complementary Classes of Perfect Graphs , 2005, COCOON.

[17]  Gérard Cornuéjols,et al.  Universally signable graphs , 1997, Comb..

[18]  Klaus Truemper,et al.  Alpha-balanced graphs and matrices and GF(3)-representability of matroids , 1982, J. Comb. Theory, Ser. B.

[19]  Celina M. H. de Figueiredo,et al.  On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs , 2007, Theor. Comput. Sci..

[20]  Nicolas Trotignon,et al.  Algorithms for Perfectly Contractile Graphs , 2005, SIAM J. Discret. Math..

[21]  Nicolas Trotignon,et al.  Algorithms for Square-3PC(., .)-Free Berge Graphs , 2008, SIAM J. Discret. Math..

[22]  Ken-ichi Kawarabayashi,et al.  Detecting even holes , 2005 .

[23]  Gérard Cornuéjols,et al.  Even‐hole‐free graphs part II: Recognition algorithm , 2002, J. Graph Theory.

[24]  R. Sritharan Chordal bipartite completion of colored graphs , 2008, Discret. Math..