Mucosal immunity--a major adaptive defence mechanism.

The epithelial glycoprotein called secretory component (SC) is quantitatively the most important receptor of the immune system because it is responsible for external transport of locally produced polymeric IgA (pIgA) to generate remarkably large amounts of secretory IgA. Antibodies of this type constitute the major mediators of specific humoral immunity. Transmembrane SC belongs to the Ig supergene family and functions as a common pIg receptor, also translocating pentameric IgM externally to form secretory IgM. The B cells responsible for mucosal pIg production are initially stimulated in organized mucosa-associated lymphoepithelial structures, particularly the Peyer's patches in the distal small intestine; from these inductive site they migrate as memory cells to exocrine tissues all over the body. Mucous membranes are thus furnished with secretory antibodies in an integrated way, ensuring a variety of specificities at every secretory effector site. There is currently great interest in exploiting this integrated or "common" mucosal immune system for oral vaccination against pathogenic infectious agents and also to induce tolerance in T cell-mediated autoimmune diseases. However, much remains to be learned about mechanisms for antigen uptake and processing necessary to elicit stimulatory or suppressive mucosal immune responses. Moreover, evidence is emerging for the existence of considerable regionalization with regard to functional links between inductive sites and effecter sites of mucosal immunity.