Computational design of swarms

In this work, a method for the rapid computational design and simulation of multiparticle swarms is developed. Specifically, a non‐convex optimization strategy is constructed, based on genetic algorithms, to design desired swarm‐like behaviour. To allow rapid evaluation of various swarm design performances, a temporally‐adaptive iterative scheme is developed to determine the positions, velocities and accelerations of members of the swarm. The overall purpose of such an approach is to facilitate rapid decision making for the dynamics of large numbers of interacting objects, whose goal is to reach a target guarded by obstacles in a minimum amount of time. Copyright © 2003 John Wiley & Sons, Ltd.

[1]  C. Breder Equations Descriptive of Fish Schools and Other Animal Aggregations , 1954 .

[2]  J. Ortega,et al.  Nonlinear Difference Equations and Gauss-Seidel Type Iterative Methods , 1966 .

[3]  Jr. J. W. Kitchen Concerning the convergence of iterates to fixed points , 1966 .

[4]  A. Ostrowski Solution of equations and systems of equations , 1967 .

[5]  J. Bender,et al.  On the Flow Capacity of Automated Highways , 1970 .

[6]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[7]  M. Tomizuka,et al.  Control issues in automated highway systems , 1994, IEEE Control Systems.

[8]  J. K. Hedrick,et al.  Dynamic Coupling in Vehicles Under Automatic Control , 1994 .

[9]  J. Hedrick,et al.  String stability of interconnected systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[10]  E. Kokubo,et al.  ON RUNAWAY GROWTH OF PLANETESIMALS , 1996 .

[11]  A. Provenzale,et al.  Forming Planetesimals in Vortices , 1996 .

[12]  D. Davis,et al.  Accretional Evolution of a Planetesimal Swarm , 1997 .

[13]  W. M. Kaula,et al.  Dynamical Evolution of Planetesimals in the Outer Solar System II. The Saturn/Uranus and Uranus/Neptune Zones , 1999 .

[14]  W. M. Kaula,et al.  Dynamical Evolution of Planetesimals in the Outer Solar System: I. The Jupiter/Saturn Zone , 1999 .

[15]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[16]  J. K. Hedrick,et al.  Constant Spacing Strategies for Platooning in Automated Highway Systems , 1999 .

[17]  K. Supulver,et al.  Formation of Icy Planetesimals in a Turbulent Solar Nebula , 2000 .

[18]  J. Barranco,et al.  Vortices in Protoplanetary Disks and the Formation of Planetesimals , 2000 .

[19]  E. Kokubo,et al.  Formation of Protoplanets from Planetesimals in the Solar Nebula , 2000 .

[20]  J. Barranco,et al.  Scalings and Asymptotics of Coherent Vortices in Protoplanetary Disks , 2000 .

[21]  Marios M. Polycarpou,et al.  Stability analysis of one-dimensional asynchronous swarms , 2003, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[22]  Marios M. Polycarpou,et al.  Stability analysis of one-dimensional asynchronous mobile swarms , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[23]  J. Shamma A connection between structured uncertainty and decentralized control of spatially invariant systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[24]  T. Zohdi Computational optimization of the vortex manufacturing of advanced materials , 2001 .

[25]  T. Zohdi An adaptive‐recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids , 2002 .

[26]  Kevin M. Passino,et al.  Stability analysis of swarms , 2003, IEEE Trans. Autom. Control..

[27]  T. Zohdi Large-scale statistical inverse computation of inelastic accretion in transient granular flows , 2003 .

[28]  Yang Liu,et al.  Stability analysis of one-dimensional asynchronous swarms , 2003, IEEE Trans. Autom. Control..