Extension of the MST continuum solvation model to the RM1 semiempirical hamiltonian

The need to simulate large‐sized molecules or to deal with large series of compounds is a challenging topic in computational chemistry, which has stimulated the development of accurate semiempirical methods, such as the recently reported Recife Model 1 (RM1; J Comput Chem 2006, 27, 1101). Even though RM1 may prove to be of value simply due to the enhanced quantitative accuracy in gas phase, it is unclear how the new parameters optimized for RM1 affect the suitability of this semiempirical Hamiltonian to study chemical processes in condensed phases. To address this question, we report the parametrization of the MST/RM1 continuum model for neutral solutes in water, octanol, chloroform and carbon tetrachloride, and for ions in water. The results are used to discuss the transferability of the solvation parameters implemented in previous MST/AM1 and MST/PM3 models. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2008

[1]  M. Tissandier,et al.  The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data , 1998 .

[2]  George P. Ford,et al.  The optimized ellisoidal cavity and its application to the self‐consistent reaction field calculation of hydration energies of cations and neutral molecules , 1992 .

[3]  William L. Jorgensen,et al.  Improved semiempirical heats of formation through the use of bond and group equivalents , 2002, J. Comput. Chem..

[4]  Manuel F. Ruiz-López,et al.  Calibration of the Quantum/Classical Hamiltonian in Semiempirical QM/MM AM1 and PM3 Methods , 2000 .

[5]  F. J. Luque,et al.  An AM1-SCRF approach to the study of changes in molecular properties induced by solvent , 1993 .

[6]  Timothy Clark,et al.  A numerical self-consistent reaction field (SCRF) model for ground and excited states in NDDO-based methods , 1993 .

[7]  Yoshio Inoue,et al.  General parameterization of a reaction field theory combined with the boundary element method , 1994, J. Comput. Chem..

[8]  George P. Ford,et al.  Molecular-orbital theory of a solute in a continuum with an arbitrarily shaped boundary represented by finite surface elements , 1992 .

[9]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[10]  F. J. Luque,et al.  Theoretical Methods for the Description of the Solvent Effect in Biomolecular Systems. , 2000, Chemical reviews.

[11]  R. Pierotti,et al.  A scaled particle theory of aqueous and nonaqueous solutions , 1976 .

[12]  Jiali Gao,et al.  Walden-Inversion-Enforced Transition-State Stabilization in a Protein Tyrosine Phosphatase , 1998 .

[13]  Ann M. Schmiedekamp,et al.  Proton affinities of molecules containing nitrogen and oxygen: comparing ab initio and semiempirical results to experiments , 1992 .

[14]  Yoshio Inoue,et al.  An application of the reaction field theory to hydrated metal cations in the framework of the MNDO, AM1, and PM3 methods , 1995, J. Comput. Chem..

[15]  Kenji Morihashi,et al.  An MNDO-effective charge model study of the solvent effect: The internal rotation about partial double bonds and the nitrogen inversion in amine , 1988 .

[16]  C. Cramer,et al.  An SCF Solvation Model for the Hydrophobic Effect and Absolute Free Energies of Aqueous Solvation , 1992, Science.

[17]  F. Javier Luque,et al.  Transferability of fragmental contributions to the octanol/water partition coefficient: An NDDO‐based MST study , 2003, J. Comput. Chem..

[18]  Alan R. Katritzky,et al.  Quantitative predictions of tautomeric equilibria for 2-, 3-, and 4-substituted pyridines in both the gas phase and aqueous solution: combination of AM1 with reaction field theory , 1989 .

[19]  Jacopo Tomasi,et al.  Electrostatic interaction of a solute with a continuum. Improved description of the cavity and of the surface cavity bound charge distribution. , 1987 .

[20]  F. J. Luque,et al.  Optimization of the cavity size for ab initio MST-SCRF calculations of monovalent ions , 1994 .

[21]  Donald G. Truhlar,et al.  MODEL FOR AQUEOUS SOLVATION BASED ON CLASS IV ATOMIC CHARGES AND FIRST SOLVATION SHELL EFFECTS , 1996 .

[22]  F. J. Luque,et al.  Comparative study of the molecular electrostatic potential obtained from different wavefunctions. Reliability of the semiempirical MNDO wavefunction , 1990 .

[23]  Alfredo Mayall Simas,et al.  RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I , 2006, J. Comput. Chem..

[24]  Donald G. Truhlar,et al.  Universal Quantum Mechanical Model for Solvation Free Energies Based on Gas-Phase Geometries , 1998 .

[25]  M. V. Basilevsky,et al.  Quantum-chemical calculations of the hydration energies of organic cations and anions in the framework of a continuum solvent approximation , 1992 .

[26]  Gregory D. Hawkins,et al.  Parametrized Models of Aqueous Free Energies of Solvation Based on Pairwise Descreening of Solute Atomic Charges from a Dielectric Medium , 1996 .

[27]  Alan R. Katritzky,et al.  Reconsideration of solvent effects calculated by semiempirical quantum chemical methods , 1993, J. Comput. Chem..

[28]  R. Voets,et al.  Theoretical study of the proton affinities of 2‐, 3‐, and 4‐monosubstituted pyridines in the gas phase by means of MINDO/3, MNDO, and AM1 , 1989 .

[29]  David J. Giesen,et al.  A Universal Organic Solvation Model. , 1996, The Journal of organic chemistry.

[30]  C. Cramer,et al.  Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. , 1999, Chemical reviews.

[31]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[32]  Gilles Frison,et al.  Some difficulties encountered with AM1 and PM3 calculations , 1998 .

[33]  F. Javier Luque,et al.  Comparison of NDDO and quasi‐ab initio approaches to compute semiempirical molecular electrostatic potentials , 1994, J. Comput. Chem..

[34]  William L. Jorgensen,et al.  PDDG/PM3 and PDDG/MNDO: Improved semiempirical methods , 2002, J. Comput. Chem..

[35]  C. Cramer,et al.  General parameterized SCF model for free energies of solvation in aqueous solution , 1991 .

[36]  Jerzy Leszczynski,et al.  COMPUTATIONAL CHEMISTRY: Reviews of Current Trends , 2006 .

[37]  Michael J. S. Dewar,et al.  Evaluation of AM1 calculated proton affinities and deprotonation enthalpies , 1986 .

[38]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[39]  James J. P. Stewart,et al.  MOPAC: A semiempirical molecular orbital program , 1990, J. Comput. Aided Mol. Des..

[40]  Claude Millot,et al.  Improving description of hydrogen bonds at the semiempirical level: water–water interactions as test case , 2000 .

[41]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[42]  Jacek Koput,et al.  PM3 study of the proton affinities of 2‐, 3‐, and 4‐monosubstituted pyridines in the gas phase , 1991 .

[43]  F. J. Luque,et al.  A new strategy for the representation of environment effects in semi-empirical calculations based on Dewar's Hamiltonians , 1992 .

[44]  David A. Dixon,et al.  Absolute Hydration Free Energy of the Proton from First-Principles Electronic Structure Calculations , 2001 .

[45]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[46]  F. J. Luque,et al.  An optimized AM1/MST method for the MST‐SCRF representation of solvated systems , 1994, J. Comput. Chem..

[47]  Arieh Warshel,et al.  Computer Modeling of Chemical Reactions in Enzymes and Solutions , 1991 .

[48]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[49]  Àngels González-Lafont,et al.  Direct dynamics calculation of the kinetic isotope effect for an organic hydrogen-transfer reaction, including corner-cutting tunneling in 21 dimensions , 1993 .

[50]  Peter L. Cummins,et al.  Atomic charges derived from semiempirical electrostatic potentials; an interaction energy method , 1990 .

[51]  F. J. Luque,et al.  MST continuum study of the hydration free energies of monovalent ionic species. , 2005, The journal of physical chemistry. B.

[52]  Modesto Orozco,et al.  Solvent Effects in Chloroform Solution: Parametrization of the MST/SCRF Continuum Model , 1996 .

[53]  György G. Ferenczy,et al.  Semiempirical AM1 electrostatic potentials and AM1 electrostatic potential derived charges: A comparison with ab initio values , 1989 .

[54]  F. Javier Luque,et al.  Continuum solvation models: Dissecting the free energy of solvation , 2003 .

[55]  Modesto Orozco,et al.  THE POLARIZATION CONTRIBUTION TO THE FREE ENERGY OF HYDRATION , 1995 .

[56]  Donald G Truhlar,et al.  SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters. , 2005, Journal of chemical theory and computation.

[57]  F. Javier Luque,et al.  Development of optimized MST/SCRF methods for semiempirical calculations: The MNDO and PM3 Hamiltonians , 1995, J. Comput. Chem..

[58]  F. Javier Luque,et al.  CAVITATION CONTRIBUTION TO THE FREE ENERGY OF SOLVATION. COMPARISON OF DIFFERENT FORMALISMS IN THE CONTEXT OF MST CALCULATIONS , 1999 .