Singular Value Decomposition

We study the SVD of an arbitrary matrix , especially its subspaces of activation, which leads in natural manner to pseudoinverse of Moore-Bjenhammar-Penrose. Besides, we analyze the compatibility of linear systems and the uniqueness of the corresponding solution, and our approach gives the Lanczos classification for these systems.

[1]  柳井 晴夫,et al.  Projection matrices, generalized inverse matrices, and singular value decomposition , 2011 .

[2]  Y. Takane,et al.  Generalized Inverse Matrices , 2011 .

[3]  D. Kalman A Singularly Valuable Decomposition: The SVD of a Matrix , 1996 .

[4]  David Spring,et al.  A geometrically inspired proof of the singular value decomposition , 1989 .

[5]  Cliff Long,et al.  Visualization of Matrix Singular Value Decomposition , 1983 .

[6]  I. J. Good,et al.  Some Applications of the Singular Decomposition of a Matrix , 1969 .

[7]  C. Lanczos,et al.  Boundary Value Problems and Orthogonal Expansions , 1966 .

[8]  L. Goddard Linear Differential Operators , 1962, Nature.

[9]  H. Schwerdtfeger Direct Proof of Lanczos' Decomposition Theorem , 1960 .

[10]  C. Lanczos,et al.  Linear Systems in Self-Ad Joint Form , 1958 .

[11]  A. Bjerhammar Application of calculus of matrices to method of least squares : with special reference to geodetic calculations , 1951 .

[12]  C. Eckart,et al.  A principal axis transformation for non-hermitian matrices , 1939 .

[13]  E. Browne The characteristic roots of a matrix , 1930 .

[14]  Léon Autonne,et al.  Sur les matrices hypohermitiennes et sur les matrices unitaires , 1915 .

[15]  É. Picard Sur un thÉorÈme gÉnÉral relatif aux Équations intÉgrales de premiÈre espÈce et sur quelques problÈmes de physique mathÉmatique , 1910 .

[16]  E. Schmidt Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .