The phylogenetic position of ctenophores and the origin(s) of nervous systems

[1]  P. Oliveri,et al.  Molecular characterization of the apical organ of the anthozoan Nematostella vectensis , 2015, Developmental biology.

[2]  M. Nikitin Bioinformatic prediction of Trichoplax adhaerens regulatory peptides. , 2015, General and comparative endocrinology.

[3]  G. Richards,et al.  Transgenic analysis of a SoxB gene reveals neural progenitor cells in the cnidarian Nematostella vectensis , 2014, Development.

[4]  D. Arendt,et al.  Evolution: Ctenophore Genomes and the Origin of Neurons , 2014, Current Biology.

[5]  J. Ryan Did the ctenophore nervous system evolve independently? , 2014, Zoology.

[6]  R. C. Thomson,et al.  A critical appraisal of the use of microRNA data in phylogenetics , 2014, Proceedings of the National Academy of Sciences.

[7]  Todd H. Oakley,et al.  The Comb Jelly Opsins and the Origins of Animal Phototransduction , 2014, Genome biology and evolution.

[8]  C. Winters,et al.  Novel Cell Types, Neurosecretory Cells, and Body Plan of the Early-Diverging Metazoan Trichoplax adhaerens , 2014, Current Biology.

[9]  E. Jorgensen Animal Evolution: Looking for the First Nervous System , 2014, Current Biology.

[10]  Victor V. Solovyev,et al.  The Ctenophore Genome and the Evolutionary Origins of Neural Systems , 2014, Nature.

[11]  S. Tamm Cilia and the life of ctenophores , 2014 .

[12]  S. Leys,et al.  The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. , 2014, Molecular biology and evolution.

[13]  S. Leys,et al.  Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges , 2014, BMC Evolutionary Biology.

[14]  C. David,et al.  Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps , 2014, Scientific Reports.

[15]  Nicholas H. Putnam,et al.  The Genome of the Ctenophore Mnemiopsis leidyi and Its Implications for Cell Type Evolution , 2013, Science.

[16]  E. Hovig,et al.  Substantial Loss of Conserved and Gain of Novel MicroRNA Families in Flatworms , 2013, Molecular biology and evolution.

[17]  G. Jékely Global view of the evolution and diversity of metazoan neuropeptide signaling , 2013, Proceedings of the National Academy of Sciences.

[18]  S. Tunaru,et al.  Conserved MIP receptor–ligand pair regulates Platynereis larval settlement , 2013, Proceedings of the National Academy of Sciences.

[19]  M. Maldonado,et al.  Deep metazoan phylogeny: when different genes tell different stories. , 2013, Molecular phylogenetics and evolution.

[20]  Morgan Park,et al.  Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes , 2012, BMC Biology.

[21]  A. Baxevanis,et al.  MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi , 2012, BMC Genomics.

[22]  D. Barker,et al.  Ghost Loci Imply Hox and ParaHox Existence in the Last Common Ancestor of Animals , 2012, Current Biology.

[23]  R. DeSalle,et al.  E value cutoff and eukaryotic genome content phylogenetics. , 2012, Molecular phylogenetics and evolution.

[24]  A. Alié,et al.  New insights on ctenophore neural anatomy: immunofluorescence study in Pleurobrachia pileus (Müller, 1776). , 2011, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[25]  H. Philippe,et al.  Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough , 2011, PLoS biology.

[26]  J. Collins,et al.  Genome-Wide Analyses Reveal a Role for Peptide Hormones in Planarian Germline Development , 2010, PLoS biology.

[27]  Todd H. Oakley,et al.  The Amphimedon queenslandica genome and the evolution of animal complexity , 2010, Nature.

[28]  S. Leys,et al.  Evidence for glutamate, GABA and NO in coordinating behaviour in the sponge, Ephydatia muelleri (Demospongiae, Spongillidae) , 2010, Journal of Experimental Biology.

[29]  B. Morgenstern,et al.  Improved Phylogenomic Taxon Sampling Noticeably Affects Nonbilaterian Relationships , 2010, Molecular biology and evolution.

[30]  J. Vinther,et al.  A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes , 2010, Evolution & development.

[31]  M. Williamson,et al.  Three Homologous Subunits Form a High Affinity Peptide-gated Ion Channel in Hydra* , 2010, The Journal of Biological Chemistry.

[32]  M. Martindale,et al.  Assessing the root of bilaterian animals with scalable phylogenomic methods , 2009, Proceedings of the Royal Society B: Biological Sciences.

[33]  G. Jékely Evolution of phototaxis , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  Corinne Da Silva,et al.  Phylogenomics Revives Traditional Views on Deep Animal Relationships , 2009, Current Biology.

[35]  J. Baguñá,et al.  Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genes , 2009, Proceedings of the Royal Society B: Biological Sciences.

[36]  B. Schierwater,et al.  Concatenated Analysis Sheds Light on Early Metazoan Evolution and Fuels a Modern “Urmetazoon” Hypothesis , 2009, PLoS biology.

[37]  H. Hausen,et al.  Mechanism of phototaxis in marine zooplankton , 2008, Nature.

[38]  David P. Bartel,et al.  Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals , 2008, Nature.

[39]  Nicholas H. Putnam,et al.  The Trichoplax genome and the nature of placozoans , 2008, Nature.

[40]  David Q. Matus,et al.  Broad phylogenomic sampling improves resolution of the animal tree of life , 2008, Nature.

[41]  M. Williamson,et al.  A Peptide-gated Ion Channel from the Freshwater Polyp Hydra* , 2007, Journal of Biological Chemistry.

[42]  A. Minelli Animal Evolution: Interrelationships of the Living Phyla , 2007 .

[43]  G. Richards,et al.  Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics , 2007, BMC Evolutionary Biology.

[44]  B. Schierwater,et al.  Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. Hoch,et al.  Heteromerization of innexin gap junction proteins regulates epithelial tissue organization in Drosophila. , 2006, Molecular biology of the cell.

[46]  B. Degnan,et al.  Cytological Basis of Photoresponsive Behavior in a Sponge Larva , 2001, The Biological Bulletin.

[47]  M. Sogin,et al.  A molecular phylogenetic framework for the phylum Ctenophora using 18S rRNA genes. , 2001, Molecular phylogenetics and evolution.

[48]  J. Khattra,et al.  Recent Advances in Our Knowledge of the Myxozoa , 2001, The Journal of eukaryotic microbiology.

[49]  P. Holland,et al.  Rare genomic changes as a tool for phylogenetics. , 2000, Trends in ecology & evolution.

[50]  T. Ueda,et al.  Dynamic patterns in the locomotion and feeding behaviors by the placozoan Trichoplax adhaerence. , 1999, Bio Systems.

[51]  R. Meech,et al.  Impulse conduction in a sponge. , 1999, The Journal of experimental biology.

[52]  E. Herniou,et al.  Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. , 1999, Science.

[53]  A. Collins,et al.  Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Axel Meyer,et al.  Limitations of Metazoan 18S rRNA Sequence Data: Implications for Reconstructing a Phylogeny of the Animal Kingdom and Inferring the Reality of the Cambrian Explosion , 1998, Journal of Molecular Evolution.

[55]  Y. Tsukahara,et al.  A Novel Go-mediated Phototransduction Cascade in Scallop Visual Cells* , 1997, The Journal of Biological Chemistry.

[56]  R. Raff,et al.  Evidence for a clade of nematodes, arthropods and other moulting animals , 1997, Nature.

[57]  M. Lazdunski,et al.  Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel , 1995, Nature.

[58]  S. Stickel,et al.  Monophyletic origins of the metazoa: an evolutionary link with fungi , 1993, Science.

[59]  G. Mackie,et al.  Giant Axons and Escape Swimming in Euplokamis dunlapae (Ctenophora: Cydippida). , 1992, The Biological bulletin.

[60]  J. Høeg The relation between cypris ultrastructure and metamorphosis in male and female Sacculina carcini (Crustacea, Cirripedia) , 1987, Zoomorphology.

[61]  M. Anctil Cholinergic and monoaminergic mechanisms associated with control of bioluminescence in the ctenophore Mnemiopsis leidyi , 1985 .

[62]  G. Mackie,et al.  Studies on Hexactinellid Sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1873) , 1983 .

[63]  G. Mackie,et al.  Studies on hexactinellid sponges. II. Excitability, conduction and coordination of responses in rhabdocalyptus dawsoni (lambe, 1873) , 1983 .

[64]  G. Horridge Presumed Photoreceptive Cilia in a Ctenophore , 1964 .

[65]  B. Mackay,et al.  Neurociliary Synapses in Pleurobrachia (Ctenophora) , 1964 .

[66]  J KRIMSKY,et al.  The evolution of vision. , 1957, The West Virginia medical journal.

[67]  S. Ovsepian,et al.  Wiring prior to firing: the evolutionary rise of electrical and chemical modes of synaptic transmission , 2014, Reviews in the neurosciences.

[68]  H. Philippe,et al.  Impact of missing data on phylogenies inferred from empirical phylogenomic data sets. , 2013, Molecular biology and evolution.

[69]  R. Zardoya,et al.  Evolutionary analyses of gap junction protein families. , 2013, Biochimica et biophysica acta.