Fine-Tuning Zeilberger’s Algorithm

It is shown how the performance of Zeilberger’s algorithm and its q-version for proving (q-)hypergeometric summation identities can be dramatically improved by a frequently missed optimization on the programming level and by applying certain kinds of substitutions to the summand. These methods lead to computer proofs of identities for which all existing programs have failed so far.

[1]  George E. Andrews,et al.  Pfaff's method (I): The Mills-Robbins-Rumsey determinant , 1998, Discret. Math..

[2]  Doron Zeilberger,et al.  The Method of Creative Telescoping , 1991, J. Symb. Comput..

[3]  W. Rheinboldt,et al.  Generalized hypergeometric functions , 1968 .

[4]  Tom H. Koornwinder,et al.  On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .

[5]  Marko Petkovsek,et al.  Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..

[6]  G. Rw Decision procedure for indefinite hypergeometric summation , 1978 .

[7]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[8]  L. Carlitz Some formulas of F. H. Jackson , 1969 .

[9]  Mizan Rahman Some Quadratic and Cubic Summation Formulas for Basic Hypergeometric Series , 1993, Canadian Journal of Mathematics.

[10]  Peter Paule,et al.  Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type , 1994, Electron. J. Comb..

[11]  The universal chiral partition function for exclusion statistics , 1998, hep-th/9808013.

[12]  George E. Andrews,et al.  Pfaff's method (III): Comparison with the WZ method , 1995, Electron. J. Comb..

[13]  Mourad E. H. Ismail,et al.  Special functions, q-series, and related topics , 1997 .

[15]  Peter Paule,et al.  A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..

[16]  Wolfram Koepf,et al.  Algorithms for q-Hypergeometric Summation in Computer Algebra , 1999, J. Symb. Comput..

[17]  Doron Zeilberger,et al.  A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..