Fine-Tuning Zeilberger’s Algorithm
暂无分享,去创建一个
[1] George E. Andrews,et al. Pfaff's method (I): The Mills-Robbins-Rumsey determinant , 1998, Discret. Math..
[2] Doron Zeilberger,et al. The Method of Creative Telescoping , 1991, J. Symb. Comput..
[3] W. Rheinboldt,et al. Generalized hypergeometric functions , 1968 .
[4] Tom H. Koornwinder,et al. On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .
[5] Marko Petkovsek,et al. Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..
[6] G. Rw. Decision procedure for indefinite hypergeometric summation , 1978 .
[7] Doron Zeilberger,et al. An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .
[8] L. Carlitz. Some formulas of F. H. Jackson , 1969 .
[9] Mizan Rahman. Some Quadratic and Cubic Summation Formulas for Basic Hypergeometric Series , 1993, Canadian Journal of Mathematics.
[10] Peter Paule,et al. Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type , 1994, Electron. J. Comb..
[11] The universal chiral partition function for exclusion statistics , 1998, hep-th/9808013.
[12] George E. Andrews,et al. Pfaff's method (III): Comparison with the WZ method , 1995, Electron. J. Comb..
[13] Mourad E. H. Ismail,et al. Special functions, q-series, and related topics , 1997 .
[15] Peter Paule,et al. A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..
[16] Wolfram Koepf,et al. Algorithms for q-Hypergeometric Summation in Computer Algebra , 1999, J. Symb. Comput..
[17] Doron Zeilberger,et al. A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..