A new fractional order hyperchaotic Rabinovich system and its dynamical behaviors

Abstract In the paper, the dynamical behaviors of a new fractional order hyperchaotic Rabinovich system are investigated, which include its local stability, hyperchaos, chaotic control and synchronization. Firstly, a new fractional order hyperchaotic Rabinovich system with Caputo derivative is proposed. Then, the hyperchaotic attractors of the commensurate and incommensurate fractional order hyperchaotic Rabinovich system are found. After that, four linear feedback controllers are designed to stabilize this fractional order system Finally, by using the active control method the synchronization is studied between the fractional order hyperchaotic and chaos controlled Rabinovich system In addition, the theoretical predictions are confirmed by numerical simulations.

[1]  Dumitru Baleanu,et al.  Effects of HIV infection on CD4+ T-cell population based on a fractional-order model , 2017, Advances in Difference Equations.

[2]  Xue-Rong Shi,et al.  Adaptive added-order anti-synchronization of chaotic systems with fully unknown parameters , 2009, Appl. Math. Comput..

[3]  M. Rabinovich,et al.  Onset of stochasticity in decay confinement of parametric instability , 1978 .

[4]  Binoy Krishna Roy,et al.  Synchronization and anti-synchronization of Lu and Bhalekar–Gejji chaotic systems using nonlinear active control , 2014 .

[5]  Mohammad Saleh Tavazoei,et al.  Chaotic attractors in incommensurate fractional order systems , 2008 .

[6]  Fangqi Chen,et al.  Bifurcations and chaos of the nonlinear viscoelastic plates subjected to subsonic flow and external loads , 2016 .

[7]  Mohammad Shahzad,et al.  A Research on Active Control to Synchronize a New 3D Chaotic System , 2016, Syst..

[8]  Jin-Man He,et al.  Fractional Birkhoffian method for equilibrium stability of dynamical systems , 2016 .

[9]  Baltazar Aguirre-Hernández,et al.  Control of the Hopf Bifurcation by a Linear Feedback Control , 2015, Int. J. Bifurc. Chaos.

[10]  Marcelo A. Savi,et al.  Comparative analysis of chaos control methods: A mechanical system case study , 2011 .

[11]  Marcelo A. Savi,et al.  Nonlinear dynamics and chaos in shape memory alloy systems , 2015 .

[12]  Dumitru Baleanu,et al.  Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives , 2005 .

[13]  Yılmaz Uyaroğlu,et al.  Controlling hyperchaotic Rabinovich system with single state controllers: Comparison of linear feedback, sliding mode, and passive control methods , 2017 .

[14]  Congxu Zhu Controlling hyperchaos in hyperchaotic Lorenz system using feedback controllers , 2010, Appl. Math. Comput..

[15]  O. Rössler An equation for hyperchaos , 1979 .

[16]  Leonid Fridman,et al.  Quasi-continuous high-order sliding-mode controllers for reduced-order chaos synchronization , 2008 .

[17]  L. Fridmanb,et al.  Quasi-continuous high-order sliding-mode controllers for reduced-order chaos synchronization , 2008 .

[18]  M. Yao,et al.  Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system , 2015 .

[19]  Jun-Guo Lu,et al.  Chaotic dynamics and synchronization of fractional-order Arneodo’s systems , 2005 .

[20]  E. Ahmed,et al.  Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models , 2007 .

[21]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Chien-Cheng Tseng,et al.  Design of FIR and IIR fractional order Simpson digital integrators , 2007, Signal Process..

[24]  Shao-Kai Luo,et al.  Fractional generalized Hamilton method for equilibrium stability of dynamical systems , 2016, Appl. Math. Lett..

[25]  Richard L. Magin,et al.  Chaos in the fractional order nonlinear Bloch equation with delay , 2015, Commun. Nonlinear Sci. Numer. Simul..

[26]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[27]  Guangyi Wang,et al.  A new modified hyperchaotic Lü system , 2006 .

[28]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[29]  Tiegang Gao,et al.  Analysis of the hyper-chaos generated from Chen’s system , 2009 .

[30]  F. Mei,et al.  A fractional gradient representation of the Poincaré equations , 2013 .

[31]  Ruy Barboza Dynamics of a hyperchaotic Lorenz System , 2007, Int. J. Bifurc. Chaos.

[32]  O. Agrawal,et al.  Fractional hamilton formalism within caputo’s derivative , 2006, math-ph/0612025.

[33]  Jian Xu,et al.  Projective synchronization of different chaotic time-delayed neural networks based on integral sliding mode controller , 2010, Appl. Math. Comput..

[34]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[35]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[36]  Yuan Kang,et al.  Chaos in the Newton–Leipnik system with fractional order , 2008 .

[37]  Eqab M. Rabei,et al.  On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative , 2007, 0708.1690.

[38]  Linear feedback control and synchronization of a new chaotic system via two states and two inputs , 2016, 2016 Chinese Control and Decision Conference (CCDC).

[39]  Zhu Wang,et al.  An Image Encryption Scheme Based on Hyperchaotic Rabinovich and Exponential Chaos Maps , 2015, Entropy.

[40]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[41]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[42]  Yılmaz Uyaroğlu,et al.  Controlling Rucklidge chaotic system with a single controller using linear feedback and passive control methods , 2014 .

[43]  Subir Das,et al.  Synchronization of fractional order chaotic systems using active control method , 2012 .

[44]  Paulo C. Rech,et al.  A hyperchaotic Chua System , 2009, Int. J. Bifurc. Chaos.

[45]  A. Pálfalvi,et al.  Efficient solution of a vibration equation involving fractional derivatives , 2010 .

[46]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[47]  Dumitru Baleanu,et al.  Discrete chaos in fractional delayed logistic maps , 2015 .

[48]  Lincong Chen,et al.  Stationary response of strongly non-linear oscillator with fractional derivative damping under bounded noise excitation , 2012 .

[49]  Min Shi,et al.  A Modified Multi-Step Differential Transform Method for Solving Fractional Dynamic Systems , 2013 .

[50]  S. Luo,et al.  Stability for manifolds of the equilibrium state of fractional Birkhoffian systems , 2015 .

[51]  Qigui Yang,et al.  A hyperchaotic system from the Rabinovich system , 2010, J. Comput. Appl. Math..

[52]  Yılmaz Uyaroğlu,et al.  Synchronization and control of chaos in supply chain management , 2015, Comput. Ind. Eng..

[53]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.