Mechanisms shaping the membranes of cellular organelles.

Cellular organelles have characteristic morphologies that arise as a result of different local membrane curvatures. A striking example is the endoplasmic reticulum (ER), which consists of ER tubules with high curvature in cross-section, peripheral ER sheets with little curvature except at their edges and the nuclear envelope with low curvature except where the nuclear pores are inserted. The ER may be shaped by several mechanisms. ER tubules are often generated through their association with the cytoskeleton and stabilized by two families of integral membrane proteins, the reticulons and DP1/Yop1p. Similar to how curvature is generated in budding vesicles, these proteins may use scaffolding and hydrophobic insertion mechanisms to shape the lipid bilayer into tubules. In addition, proteins of the dynamin family may deform the ER membrane to generate a tubular network. Mechanisms affecting local membrane curvature may also shape peripheral ER sheets and the nuclear envelope as well as mitochondria and caveolae.

[1]  Yoko Shibata,et al.  A Class of Dynamin-like GTPases Involved in the Generation of the Tubular ER Network , 2009, Cell.

[2]  R. Jagasia,et al.  Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g , 2009, The Journal of cell biology.

[3]  T. Dawson,et al.  ER membrane–bending proteins are necessary for de novo nuclear pore formation , 2009, The Journal of cell biology.

[4]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[5]  Xinnan Wang,et al.  The Mechanism of Ca2+-Dependent Regulation of Kinesin-Mediated Mitochondrial Motility , 2009, Cell.

[6]  S. Schmid,et al.  Real-Time Visualization of Dynamin-Catalyzed Membrane Fission and Vesicle Release , 2008, Cell.

[7]  S. Schmid,et al.  GTPase Cycle of Dynamin Is Coupled to Membrane Squeeze and Release, Leading to Spontaneous Fission , 2008, Cell.

[8]  G. Blobel,et al.  A fence-like coat for the nuclear pore membrane. , 2008, Molecular cell.

[9]  Christos Proukakis,et al.  Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms , 2008, The Lancet Neurology.

[10]  Eric D. Spear,et al.  Structural Evidence for Common Ancestry of the Nuclear Pore Complex and Vesicle Coats , 2008, Science.

[11]  P. Webster,et al.  Knockdown of p180 eliminates the terminal differentiation of a secretory cell line. , 2008, Molecular biology of the cell.

[12]  P. De Camilli,et al.  Arf1-GTP-induced Tubule Formation Suggests a Function of Arf Family Proteins in Curvature Acquisition at Sites of Vesicle Budding* , 2008, Journal of Biological Chemistry.

[13]  K. H. Albrecht,et al.  Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. , 2008, Cell metabolism.

[14]  M. Hetzer,et al.  Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation , 2008, The Journal of cell biology.

[15]  M. Kozlov,et al.  The hydrophobic insertion mechanism of membrane curvature generation by proteins. , 2008, Biophysical journal.

[16]  E. Hurt,et al.  Membrane curvature induced by Arf1-GTP is essential for vesicle formation , 2008, Proceedings of the National Academy of Sciences.

[17]  G. Blobel,et al.  A Network of Nuclear Envelope Membrane Proteins Linking Centromeres to Microtubules , 2008, Cell.

[18]  S. Stagg,et al.  Structural Basis for Cargo Regulation of COPII Coat Assembly , 2008, Cell.

[19]  T. Rapoport,et al.  The Reticulon and Dp1/Yop1p Proteins Form Immobile Oligomers in the Tubular Endoplasmic Reticulum , 2008, Journal of Biological Chemistry.

[20]  B. Peter,et al.  Arf family GTP loading is activated by, and generates, positive membrane curvature , 2008, The Biochemical journal.

[21]  M. Kozlov,et al.  Mechanics of membrane fusion , 2008, Nature Structural &Molecular Biology.

[22]  M. Kozlov,et al.  How lipid flippases can modulate membrane structure. , 2008, Biochimica et biophysica acta.

[23]  W. Kühlbrandt,et al.  Dimer ribbons of ATP synthase shape the inner mitochondrial membrane , 2008, The EMBO journal.

[24]  Adam Frost,et al.  Structural Basis of Membrane Invagination by F-BAR Domains , 2008, Cell.

[25]  T. Rapoport,et al.  Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules , 2008, Science.

[26]  P. Pilch,et al.  A Critical Role of Cavin (Polymerase I and Transcript Release Factor) in Caveolae Formation and Organization* , 2008, Journal of Biological Chemistry.

[27]  Rebecca L. Frederick,et al.  Multiple Pathways Influence Mitochondrial Inheritance in Budding Yeast , 2008, Genetics.

[28]  G. Meer,et al.  Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.

[29]  M. Kirkham,et al.  PTRF-Cavin, a Conserved Cytoplasmic Protein Required for Caveola Formation and Function , 2008, Cell.

[30]  S. Schmid,et al.  Real‐time detection reveals that effectors couple dynamin's GTP‐dependent conformational changes to the membrane , 2008, The EMBO journal.

[31]  Rebecca L. Frederick,et al.  Moving Mitochondria: Establishing Distribution of an Essential Organelle , 2007, Traffic.

[32]  O. Pylypenko,et al.  The PX‐BAR membrane‐remodeling unit of sorting nexin 9 , 2007, The EMBO journal.

[33]  D. Chan,et al.  Functions and dysfunctions of mitochondrial dynamics , 2007, Nature Reviews Molecular Cell Biology.

[34]  I. Boldogh,et al.  Mitochondria on the move. , 2007, Trends in cell biology.

[35]  Rohit Mittal,et al.  Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. , 2007, Structure.

[36]  K. Oegema,et al.  A role for Rab5 in structuring the endoplasmic reticulum , 2007, The Journal of cell biology.

[37]  J. Mancias,et al.  Structure and Organization of Coat Proteins in the COPII Cage , 2007, Cell.

[38]  Z. Rao,et al.  Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5 , 2007, The EMBO journal.

[39]  X. Mao,et al.  Crystal Structure of the BAR-PH domain of human APPL1 , 2007 .

[40]  M. Kozlov,et al.  How Synaptotagmin Promotes Membrane Fusion , 2007, Science.

[41]  Sumio Sugano,et al.  Curved EFC/F-BAR-Domain Dimers Are Joined End to End into a Filament for Membrane Invagination in Endocytosis , 2007, Cell.

[42]  N. Pfanner,et al.  The morphology proteins Mdm12/Mmm1 function in the major β‐barrel assembly pathway of mitochondria , 2007, The EMBO journal.

[43]  Avishay Efrat,et al.  Point-like protrusion as a prestalk intermediate in membrane fusion pathway. , 2007, Biophysical journal.

[44]  J. Nunnari The machines that divide and fuse mitochondria , 2007, Annual review of biochemistry.

[45]  R. Parton,et al.  The multiple faces of caveolae , 2007, Nature Reviews Molecular Cell Biology.

[46]  G. Drin,et al.  A general amphipathic α-helical motif for sensing membrane curvature , 2007, Nature Structural &Molecular Biology.

[47]  J. Löwe,et al.  A bacterial dynamin-like protein , 2006, Nature.

[48]  M. Kozlov,et al.  Membranes of the world unite! , 2006, The Journal of cell biology.

[49]  Rachel M. Devay,et al.  Mitochondrial Inner-Membrane Fusion and Crista Maintenance Requires the Dynamin-Related GTPase Mgm1 , 2006, Cell.

[50]  N. Jamin,et al.  Role of the membrane interface on the conformation of the caveolin scaffolding domain: A CD and NMR study , 2006, FEBS letters.

[51]  Yoko Shibata,et al.  Rough Sheets and Smooth Tubules , 2006, Cell.

[52]  K. Mihara,et al.  Regulation of mitochondrial morphology through proteolytic cleavage of OPA1 , 2006, The EMBO journal.

[53]  Katia J. Evans,et al.  Interaction of two hereditary spastic paraplegia gene products, spastin and atlastin, suggests a common pathway for axonal maintenance. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Soichi Takeda,et al.  Endophilin BAR domain drives membrane curvature by two newly identified structure‐based mechanisms , 2006, The EMBO journal.

[55]  Ralf Langen,et al.  Mechanism of endophilin N‐BAR domain‐mediated membrane curvature , 2006, The EMBO journal.

[56]  T. Schwarz,et al.  Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent , 2006, The Journal of cell biology.

[57]  C. Mannella Structure and dynamics of the mitochondrial inner membrane cristae. , 2006, Biochimica et biophysica acta.

[58]  W. Engel,et al.  Spastin, the most commonly mutated protein in hereditary spastic paraplegia interacts with Reticulon 1 an endoplasmic reticulum protein , 2006, Neurogenetics.

[59]  J. Hancock,et al.  Biogenesis of caveolae: a structural model for caveolin-induced domain formation , 2006, Journal of Cell Science.

[60]  T. Rapoport,et al.  A Class of Membrane Proteins Shaping the Tubular Endoplasmic Reticulum , 2006, Cell.

[61]  G. Gundersen,et al.  Here come the SUNs: a nucleocytoskeletal missing link. , 2006, Trends in cell biology.

[62]  Shiro Suetsugu,et al.  Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis , 2006, The Journal of cell biology.

[63]  J. Luzio,et al.  Spastin and atlastin, two proteins mutated in autosomal-dominant hereditary spastic paraplegia, are binding partners. , 2006, Human molecular genetics.

[64]  Qian Liu,et al.  Citation for Published Item: Use Policy Coupling of the Nucleus and Cytoplasm: Role of the Linc Complex , 2022 .

[65]  R. Stan,et al.  Structure of caveolae. , 2005, Biochimica et biophysica acta.

[66]  Simon C Watkins,et al.  Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission , 2005, The Journal of cell biology.

[67]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[68]  Bianca Habermann,et al.  Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. , 2005, Developmental cell.

[69]  J. Shaw,et al.  Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. , 2005, Annual review of genetics.

[70]  Michael M. Kozlov,et al.  Membrane Hemifusion: Crossing a Chasm in Two Leaps , 2005, Cell.

[71]  M. Hetzer,et al.  Pushing the envelope: structure, function, and dynamics of the nuclear periphery. , 2005, Annual review of cell and developmental biology.

[72]  J. McCaffery,et al.  Dnm1 forms spirals that are structurally tailored to fit mitochondria , 2005, The Journal of cell biology.

[73]  S. Wilkens,et al.  Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Randy Schekman,et al.  Sar1p N-Terminal Helix Initiates Membrane Curvature and Completes the Fission of a COPII Vesicle , 2005, Cell.

[75]  Winfried Weissenhorn,et al.  Crystal structure of the endophilin-A1 BAR domain. , 2005, Journal of molecular biology.

[76]  M. Charlton,et al.  The GTPase dMiro Is Required for Axonal Transport of Mitochondria to Drosophila Synapses , 2005, Neuron.

[77]  A. Noegel,et al.  The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope , 2005, Journal of Cell Science.

[78]  F. Barr,et al.  Golgins and GTPases, giving identity and structure to the Golgi apparatus. , 2005, Biochimica et biophysica acta.

[79]  Lucas Pelkmans,et al.  Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae , 2005, Nature.

[80]  Petra Schwille,et al.  Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  R. Epand,et al.  Caveolin scaffolding region and cholesterol-rich domains in membranes. , 2005, Journal of molecular biology.

[82]  T. Langer,et al.  Formation of membrane-bound ring complexes by prohibitins in mitochondria. , 2004, Molecular biology of the cell.

[83]  B. Chait,et al.  Components of Coated Vesicles and Nuclear Pore Complexes Share a Common Molecular Architecture , 2004, PLoS biology.

[84]  Rebecca L. Frederick,et al.  Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway , 2004, The Journal of cell biology.

[85]  R. Youle,et al.  Endophilin B1 is required for the maintenance of mitochondrial morphology , 2004, The Journal of cell biology.

[86]  J. McCaffery,et al.  Structural Basis of Mitochondrial Tethering by Mitofusin Complexes , 2004, Science.

[87]  R. Jensen,et al.  Ugo1p Links the Fzo1p and Mgm1p GTPases for Mitochondrial Fusion* , 2004, Journal of Biological Chemistry.

[88]  Christiane Lohaus,et al.  The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. , 2004, Developmental cell.

[89]  Harvey T. McMahon,et al.  The dynamin superfamily: universal membrane tubulation and fission molecules? , 2004, Nature Reviews Molecular Cell Biology.

[90]  B. Peter,et al.  BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure , 2004, Science.

[91]  Jiwon Kim,et al.  Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae , 2003, The Journal of cell biology.

[92]  Å. Engqvist-Goldstein,et al.  Actin assembly and endocytosis: from yeast to mammals. , 2003, Annual review of cell and developmental biology.

[93]  I. Boldogh,et al.  A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. , 2003, Molecular biology of the cell.

[94]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[95]  A. Reichert,et al.  Processing of Mgm1 by the Rhomboid-type Protease Pcp1 Is Required for Maintenance of Mitochondrial Morphology and of Mitochondrial DNA* , 2003, Journal of Biological Chemistry.

[96]  Yonathan Kozlovsky,et al.  Membrane fission: model for intermediate structures. , 2003, Biophysical journal.

[97]  M. Schwab,et al.  Nogo and its paRTNers. , 2003, Trends in cell biology.

[98]  T. Rapoport,et al.  Structural organization of the endoplasmic reticulum , 2002, EMBO reports.

[99]  Ian G. Mills,et al.  Curvature of clathrin-coated pits driven by epsin , 2002, Nature.

[100]  R. A. Corpina,et al.  Structure of the Sec23/24–Sar1 pre-budding complex of the COPII vesicle coat , 2002, Nature.

[101]  R. Stan Structure and function of endothelial caveolae , 2002, Microscopy research and technique.

[102]  H. McMahon,et al.  Snap-shots of clathrin-mediated endocytosis. , 2002, Trends in biochemical sciences.

[103]  M. Kozlov,et al.  The Protein Coat in Membrane Fusion: Lessons from Fission , 2002, Traffic.

[104]  J. di Rago,et al.  The ATP synthase is involved in generating mitochondrial cristae morphology , 2002, The EMBO journal.

[105]  F. Brodsky,et al.  Biological basket weaving: formation and function of clathrin-coated vesicles. , 2001, Annual review of cell and developmental biology.

[106]  M. Drab,et al.  Loss of Caveolae, Vascular Dysfunction, and Pulmonary Defects in Caveolin-1 Gene-Disrupted Mice , 2001, Science.

[107]  R. Kammerer,et al.  Subdomain-Specific Localization of Climp-63 (P63) in the Endoplasmic Reticulum Is Mediated by Its Luminal α-Helical Segment , 2001, The Journal of cell biology.

[108]  A. M. van der Bliek,et al.  The Many Shapes of Mitochondrial Membranes , 2001, Traffic.

[109]  H. Kogo,et al.  Caveolin-2 Is Targeted to Lipid Droplets, a New “Membrane Domain” in the Cell , 2001, The Journal of cell biology.

[110]  S. Munro,et al.  Accumulation of Caveolin in the Endoplasmic Reticulum Redirects the Protein to Lipid Storage Droplets , 2001, The Journal of cell biology.

[111]  E. Ikonen,et al.  A Caveolin Dominant Negative Mutant Associates with Lipid Bodies and Induces Intracellular Cholesterol Imbalance , 2001, The Journal of cell biology.

[112]  Kai Simons,et al.  Lipid rafts and signal transduction , 2000, Nature Reviews Molecular Cell Biology.

[113]  P. Silver,et al.  Mutants Affecting the Structure of the Cortical Endoplasmic Reticulum in Saccharomyces cerevisiae , 2000, The Journal of cell biology.

[114]  M. Lisanti,et al.  A Molecular Dissection of Caveolin-1 Membrane Attachment and Oligomerization , 2000, The Journal of Biological Chemistry.

[115]  T G Frey,et al.  The internal structure of mitochondria. , 2000, Trends in biochemical sciences.

[116]  Tom A. Rapoport,et al.  In Vitro Formation of the Endoplasmic Reticulum Occurs Independently of Microtubules by a Controlled Fusion Reaction , 2000, The Journal of cell biology.

[117]  C. Mannella Introduction: Our Changing Views of Mitochondria , 2000, Journal of bioenergetics and biomembranes.

[118]  K. Wittrup,et al.  Expression of the 180-Kd Ribosome Receptor Induces Membrane Proliferation and Increased Secretory Activity in Yeast , 1999, The Journal of cell biology.

[119]  M. Lisanti,et al.  The Membrane-spanning Domains of Caveolins-1 and -2 Mediate the Formation of Caveolin Hetero-oligomers , 1999, The Journal of Biological Chemistry.

[120]  M. Stowell,et al.  Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring , 1999, Nature Cell Biology.

[121]  M. Kozlov,et al.  A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements. , 1998, Biophysical journal.

[122]  E. Salmon,et al.  Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms , 1998, Current Biology.

[123]  T. Senda,et al.  Intermembrane bridges within membrane organelles revealed by quick‐freeze deep‐etch electron microscopy , 1998, The Anatomical record.

[124]  J. Helms,et al.  Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[125]  K. Wilson,et al.  Dimples, pores, star-rings, and thin rings on growing nuclear envelopes: evidence for structural intermediates in nuclear pore complex assembly. , 1997, Journal of cell science.

[126]  M. Lisanti,et al.  Mutational Analysis of the Properties of Caveolin-1 , 1997, The Journal of Biological Chemistry.

[127]  M. Lisanti,et al.  Oligomeric structure of caveolin: implications for caveolae membrane organization. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[128]  S. Schmid,et al.  Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding , 1995, Nature.

[129]  S. Schmid,et al.  Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals , 1995, Nature.

[130]  D. Soppet,et al.  Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[131]  R. Klausner,et al.  ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[132]  Richard G. W. Anderson,et al.  Caveolin, a protein component of caveolae membrane coats , 1992, Cell.

[133]  L. Chen,et al.  Dynamic behavior of endoplasmic reticulum in living cells , 1988, Cell.

[134]  K. Fujiwara,et al.  Microtubules and the endoplasmic reticulum are highly interdependent structures , 1986, The Journal of cell biology.

[135]  K. Ikeda,et al.  Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. , 1983, Journal of neurobiology.

[136]  M. Sheetz,et al.  Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[137]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[138]  A. Waisman,et al.  OPA 1-dependent cristae morphogenesis in mitochondria Prohibitins control cell proliferation and apoptosis by regulating data , 2008 .

[139]  P. Laurinmäki,et al.  Supplemental Data Molecular Mechanisms of Membrane Deformation by IBAR Domain Proteins , 2008 .

[140]  G. Blobel,et al.  Architecture of a Coat for the Nuclear Pore Membrane , 2007, Cell.

[141]  G. Drin,et al.  A general amphipathic alpha-helical motif for sensing membrane curvature. , 2007, Nature structural & molecular biology.

[142]  Michael M. Kozlov,et al.  How proteins produce cellular membrane curvature , 2006, Nature Reviews Molecular Cell Biology.

[143]  W. Antonin,et al.  Nuclear pore complexes: Round the bend? , 2005, Nature Cell Biology.

[144]  B. Walz,et al.  Endoplasmic reticulum of animal cells and its organization into structural and functional domains. , 2001, International review of cytology.

[145]  P. De Camilli,et al.  Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. , 1995, Nature.