The status of GEO 600

The GEO 600 gravitational wave detector located near Hannover in Germany is part of an international network of gravitational wave observatories. As more and more of these detectors approach their final configuration, the focus is shifted from commissioning to detector characterization. At the moment, GEO 600, the first detector using advanced technologies such as dual recycling, is preparing for a long data-taking period starting at the beginning of summer 2006. In this paper, we give an overview of detector commissioning and the detector characterization work of GEO 600 for the period between March 2005 and February 2006.

[1]  H. Lück,et al.  Measurement of a low-absorption sample of OH-reduced fused silica. , 2006, Applied optics.

[2]  Joshua R. Smith,et al.  A photon pressure calibrator for the GEO 600 gravitational wave detector , 2006 .

[3]  M. Malec Commissioning of advanced, dual-recycled gravitational-wave detectors: simulations of complex optical systems guided by the phasor picture , 2006 .

[4]  J. Smith,et al.  Towards gravitational wave astronomy: Commissioning and characterization of GEO600 , 2006 .

[5]  Benno Willke,et al.  Linear projection of technical noise for interferometric gravitational-wave detectors , 2006 .

[6]  P. Ajith,et al.  Using the null-stream of GEO 600 to veto transient events in the detector output , 2005 .

[7]  Benno Willke,et al.  Optimal time-domain combination of the two calibrated output quadratures of GEO 600 , 2005 .

[8]  Kenneth A. Strain,et al.  Principles of calibrating the dual-recycled GEO 600 , 2004 .

[9]  M. M. Casey,et al.  Commissioning, characterization and operation of the dual-recycled GEO 600 , 2004 .

[10]  Daniel Sigg,et al.  Commissioning of LIGO detectors , 2004 .

[11]  Martin M. Fejer,et al.  Mechanical quality factor measurements of monolithically suspended fused silica test masses of the GEO 600 gravitational wave detector , 2004 .

[12]  Karsten Danzmann,et al.  Damping and tuning of the fibre violin modes in monolithic silica suspensions , 2004 .

[13]  Ryutaro Takahashi,et al.  Status of TAMA300 , 2004 .

[14]  David Blair,et al.  ACIGA's high optical power test facility , 2004 .

[15]  Karsten Danzmann,et al.  Thermal correction of the radii of curvature of mirrors for GEO 600 , 2004 .

[16]  M. M. Casey,et al.  Alignment control of GEO 600 , 2004 .

[17]  G. Woan,et al.  Upper limits on the strength of periodic gravitational waves from PSR J1939+2134 , 2003, gr-qc/0311023.

[18]  Hirotaka Takahashi,et al.  Towards the search for gravitational waves from inspiralling compact binaries in TAMA300 data during 2003: the data quality and stability , 2003, gr-qc/0311037.

[19]  Generalized Wick transform in dimensionally reduced gravity , 2003, gr-qc/0309081.

[20]  H. Grote,et al.  Calibration of GEO 600 for the S1 science run , 2003 .

[21]  Benno Willke,et al.  Mode-cleaning and injection optics of the gravitational-wave detector GEO600 , 2003 .

[22]  Hartmut Grote,et al.  Making it Work: Second Generation Interferometry in GEO600! , 2003 .

[23]  G. Rigopoulos On second-order superhorizon perturbations in multifield inflationary models , 2002, astro-ph/0212141.

[24]  M. M. Casey,et al.  The automatic alignment system of GEO 600 , 2002 .

[25]  Benno Willke,et al.  Dual recycling for GEO 600 , 2002 .

[26]  M. M. Casey,et al.  Performance of a 1200 m long suspended Fabry-Perot cavity , 2001, gr-qc/0110020.

[27]  Bernard F. Schutz,et al.  The GEO 600 gravitational wave detector , 2002 .

[28]  M. M. Casey,et al.  Computer monitoring and control of the GEO 600 gravitational wave detector , 2000 .

[29]  Kenneth A. Strain,et al.  GEO 600 triple pendulum suspension system: Seismic isolation and control , 2000 .

[30]  B. Schutz,et al.  Gravitational wave astronomy , 1999, gr-qc/9911034.

[31]  Benno Willke,et al.  EXPERIMENTAL DEMONSTRATION OF A SUSPENDED DUAL RECYCLING INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION , 1998 .

[32]  Ruth H. Pater,et al.  Nuclear Instruments and Methods in Physics Research. Section B; Microstructural Characterization of Semi-Interpenetrating Polymer Networks by Positron Lifetime Spectroscopy , 1998 .

[33]  E. al.,et al.  Results of the first coincident observations by two laser-interferometric gravitational wave detectors , 1996, gr-qc/9605048.

[34]  A. Rüdiger,et al.  Thermal lensing in recycling interferometric gravitational wave detectors , 1994 .

[35]  B. J. Meers,et al.  Automatic alignment of optical interferometers. , 1994, Applied optics.

[36]  Winkler,et al.  Heating by optical absorption and the performance of interferometric gravitational-wave detectors. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[37]  Meers,et al.  Experimental demonstration of dual recycling for interferometric gravitational-wave detectors. , 1991, Physical review letters.

[38]  B. J. Meers,et al.  Recycling in laser-interferometric gravitational-wave detectors. , 1988, Physical review. D, Particles and fields.

[39]  Unnikrishnan Electron-atom scattering in a resonant laser field. , 1988, Physical review. A, General physics.

[40]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .