Cingulate cortex: Diverging data from humans and monkeys

Cognitive neuroscience research relies, in part, on homologies between the brains of human and non-human primates. A quandary therefore arises when presumed anatomical homologues exhibit different functional properties. Such a situation has recently arisen in the case of the anterior cingulate cortex (ACC). In humans, numerous studies suggest a role for ACC in detecting conflicts in information processing. Studies of macaque monkey ACC, in contrast, have failed to find conflict-related responses. We consider several interpretations of this discrepancy, including differences in research methodology and cross-species differences in functional neuroanatomy. New directions for future research are outlined, emphasizing the importance of distinguishing illusory cross-species differences from the true evolutionary differences that make our species unique.

[1]  Hakwan C. Lau,et al.  Dissociating response selection and conflict in the medial frontal surface , 2006, NeuroImage.

[2]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[3]  E. Awh,et al.  Conflict adaptation effects in the absence of executive control , 2003, Nature Neuroscience.

[4]  J. Dostrovsky,et al.  Human anterior cingulate cortex neurons modulated by attention-demanding tasks. , 2000, Journal of neurophysiology.

[5]  Joshua W. Brown,et al.  Learned Predictions of Error Likelihood in the Anterior Cingulate Cortex , 2005, Science.

[6]  M. Roesch,et al.  Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict. , 2005, Journal of neurophysiology.

[7]  Stefan Everling,et al.  Isolation of saccade inhibition processes: Rapid event-related fMRI of saccades and nogo trials , 2008, NeuroImage.

[8]  M. Posner,et al.  Cognitive and emotional influences in anterior cingulate cortex , 2000, Trends in Cognitive Sciences.

[9]  Karl Zilles,et al.  Cytology and receptor architecture of human anterior cingulate cortex , 2008, The Journal of comparative neurology.

[10]  Jonathan D. Cohen,et al.  Functional Imaging of Decision Conflict , 2008, The Journal of Neuroscience.

[11]  M. Walton,et al.  Action sets and decisions in the medial frontal cortex , 2004, Trends in Cognitive Sciences.

[12]  E. Halgren,et al.  Responses of Human Anterior Cingulate Cortex Microdomains to Error Detection, Conflict Monitoring, Stimulus-Response Mapping, Familiarity, and Orienting , 2005, The Journal of Neuroscience.

[13]  R. Peyron,et al.  Functional imaging of brain responses to pain. A review and meta-analysis (2000) , 2000, Neurophysiologie Clinique/Clinical Neurophysiology.

[14]  Katrin Amunts,et al.  Observer‐independent analysis of high‐resolution MR images of the human cerebral cortex: In vivo delineation of cortical areas , 2007, Human brain mapping.

[15]  Hatem Alkadhi,et al.  Identification of multiple nonprimary motor cortical areas with simple movements , 2001, Brain Research Reviews.

[16]  Alan C. Evans,et al.  Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. , 1996, Cerebral cortex.

[17]  Richard E. Passingham,et al.  What is special about the human brain , 2008 .

[18]  Matthew T. Kaufman,et al.  Distributed Neural Representation of Expected Value , 2005, The Journal of Neuroscience.

[19]  D. Stuss,et al.  Stroop performance in focal lesion patients: dissociation of processes and frontal lobe lesion location , 2001, Neuropsychologia.

[20]  David Badre,et al.  Computational and neurobiological mechanisms underlying cognitive flexibility. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  H Garavan,et al.  A midline dissociation between error-processing and response-conflict monitoring , 2003, NeuroImage.

[22]  Jonathan D. Cohen,et al.  Anterior Cingulate Conflict Monitoring and Adjustments in Control , 2004, Science.

[23]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[24]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[25]  Guy A. Orban,et al.  Mapping the parietal cortex of human and non-human primates , 2006, Neuropsychologia.

[26]  B. Vogt,et al.  Structural and functional dichotomy of human midcingulate cortex , 2003, The European journal of neuroscience.

[27]  Leanne Boucher,et al.  Influence of history on saccade countermanding performance in humans and macaque monkeys , 2007, Vision Research.

[28]  Leanne Boucher,et al.  Executive control of gaze by the frontal lobes , 2007, Cognitive, affective & behavioral neuroscience.

[29]  Keiji Tanaka,et al.  Mnemonic Function of the Dorsolateral Prefrontal Cortex in Conflict-Induced Behavioral Adjustment , 2007, Science.

[30]  Kristen A. Ford,et al.  BOLD fMRI activation for anti-saccades in nonhuman primates , 2009, NeuroImage.

[31]  E. Miller,et al.  From rule to response: neuronal processes in the premotor and prefrontal cortex. , 2003, Journal of neurophysiology.

[32]  W. Schneider,et al.  Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. , 2005, Brain research. Cognitive brain research.

[33]  G. D. Logan Task Switching , 2022 .

[34]  A. Schleicher,et al.  Receptor architecture of human cingulate cortex: Evaluation of the four‐region neurobiological model , 2009, Human brain mapping.

[35]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[36]  J. Price,et al.  Architectonic subdivision of the human orbital and medial prefrontal cortex , 2003, The Journal of comparative neurology.

[37]  Leslie G. Ungerleider,et al.  Sustained Activity in the Medial Wall during Working Memory Delays , 1998, The Journal of Neuroscience.

[38]  B. Vogt,et al.  Human cingulate cortex: Surface features, flat maps, and cytoarchitecture , 1995, The Journal of comparative neurology.

[39]  M. Farah,et al.  Is anterior cingulate cortex necessary for cognitive control? , 2005, Brain : a journal of neurology.

[40]  O. Hikosaka,et al.  Switching from automatic to controlled action by monkey medial frontal cortex , 2007, Nature Neuroscience.

[41]  Erich O. Richter,et al.  Human Anterior Cingulate Cortex Neurons Encode Cognitive and Emotional Demands , 2005, The Journal of Neuroscience.

[42]  K. R. Ridderinkhof,et al.  The Role of the Medial Frontal Cortex in Cognitive Control , 2004, Science.

[43]  T. Paus Primate anterior cingulate cortex: Where motor control, drive and cognition interface , 2001, Nature Reviews Neuroscience.

[44]  M. Botvinick Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function , 2007, Cognitive, affective & behavioral neuroscience.

[45]  Cameron S. Carter,et al.  Separating semantic conflict and response conflict in the Stroop task: A functional MRI study , 2005, NeuroImage.

[46]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[47]  J. Cohen,et al.  The role of locus coeruleus in the regulation of cognitive performance. , 1999, Science.

[48]  Michael W. Cole,et al.  Canceling planned action: an FMRI study of countermanding saccades. , 2004, Cerebral cortex.

[49]  Cameron S. Carter,et al.  Conflict and Cognitive Control in the Brain , 2006 .

[50]  Jonathan D. Cohen,et al.  The neural basis of error detection: conflict monitoring and the error-related negativity. , 2004, Psychological review.

[51]  Jonathan D. Cohen,et al.  Conflict monitoring and anterior cingulate cortex: an update , 2004, Trends in Cognitive Sciences.

[52]  Joshua W. Brown,et al.  Performance monitoring local field potentials in the medial frontal cortex of primates: supplementary eye field. , 2010, Journal of neurophysiology.

[53]  M. Botvinick,et al.  Conflict monitoring and cognitive control. , 2001, Psychological review.

[54]  W. Gehring,et al.  Medial Frontal Cortex Activity and Loss-Related Responses to Errors , 2006, The Journal of Neuroscience.

[55]  T. Sejnowski,et al.  23 problems in systems neuroscience , 2006 .

[56]  S. Monsell Task-set reconfiguration processes do not imply a control homunuculus: Reply to Altmann , 2003, Trends in Cognitive Sciences.

[57]  K Amunts,et al.  A stereological approach to human cortical architecture: identification and delineation of cortical areas , 2000, Journal of Chemical Neuroanatomy.

[58]  Colin M. Macleod Half a century of research on the Stroop effect: an integrative review. , 1991, Psychological bulletin.

[59]  Walter Schneider,et al.  The cognitive control network: Integrated cortical regions with dissociable functions , 2007, NeuroImage.

[60]  David J. Field,et al.  What is the other 85% of V1 doing? , 2004 .

[61]  C. Carter,et al.  Anterior cingulate cortex and conflict detection: An update of theory and data , 2007, Cognitive, affective & behavioral neuroscience.

[62]  C. Curtis,et al.  Success and Failure Suppressing Reflexive Behavior , 2003, Journal of Cognitive Neuroscience.

[63]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[64]  Daniel S. Margulies,et al.  Mapping the functional connectivity of anterior cingulate cortex , 2007, NeuroImage.

[65]  Kathryn M. McMillan,et al.  A comparison of label‐based review and ALE meta‐analysis in the Stroop task , 2005, Human brain mapping.

[66]  Joshua W. Brown,et al.  Performance Monitoring by the Anterior Cingulate Cortex During Saccade Countermanding , 2003, Science.

[67]  Stephen M Kosslyn,et al.  Deficits in visual cognition and attention following bilateral anterior cingulotomy , 2001, Neuropsychologia.

[68]  Michael S. Gazzaniga,et al.  Human: The Science Behind What Makes Us Unique , 2008 .