Plasma treatment of cellulose: investigation on molecular changes using spectroscopic methods and chemical derivatization

[1]  J. Blechschmidt Taschenbuch der Papiertechnik , 2010, Taschenbuch der Papiertechnik.

[2]  R. Simão,et al.  Preparation and characterization of starch composites with cellulose nanofibers obtained by plasma treatment and ultrasonication , 2019, Plasma Processes and Polymers.

[3]  R. Simão,et al.  Preparation and characterization of thermoplastic starch composite reinforced by plasma-treated poly (hydroxybutyrate) PHB. , 2019, International journal of biological macromolecules.

[4]  K. Oksman,et al.  Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces , 2018 .

[5]  M. Beyer,et al.  Influence of atmospheric pressure plasma jet and diffuse coplanar surface barrier discharge treatments on wood surface properties: A comparative study , 2018, Plasma Processes and Polymers.

[6]  T. von Woedtke,et al.  The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications , 2018 .

[7]  T. Nguyen,et al.  Wettability modification of heat-treated wood (HTW) via cold atmospheric-pressure nitrogen plasma jet (APPJ) , 2017 .

[8]  Jessica Hemmings Fiber , 2016 .

[9]  G. Avramidis,et al.  Impact of air-plasma treatment at atmospheric pressure on wood and wood extractives , 2016 .

[10]  L. Sivachandiran,et al.  In situ and ex situ NO oxidation assisted by sub-microsecond pulsed multi-pin-to-plane corona discharge: the effect of pin density , 2016 .

[11]  J. Watts,et al.  Characterisation of cellulose and hardwood organosolv lignin reference materials by XPS , 2016 .

[12]  P. Sťahel,et al.  Diffuse Coplanar Surface Barrier Discharge: Influence of GasHumidity on Plasma Parameters , 2015 .

[13]  A. Potthast,et al.  Formation of carbonyl groups on cellulose during ozone treatment of pulp: consequences for pulp bleaching. , 2014, Carbohydrate polymers.

[14]  P. Blanchet,et al.  Effect of Wood Surface Modification by Atmospheric-Pressure Plasma on Waterborne Coating Adhesion , 2014 .

[15]  D. Kováčik,et al.  Investigation of the plasma effects on wood after activation by diffuse coplanar surface barrier discharge , 2013, European Journal of Wood and Wood Products.

[16]  S. Rimpelová,et al.  Effect of plasma treatment on cellulose fiber , 2013, Cellulose.

[17]  Mona T. Al-Shemy,et al.  Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties , 2011 .

[18]  P. Bruggeman,et al.  On OH production in water containing atmospheric pressure plasmas , 2010 .

[19]  U. Vohrer,et al.  Determination of OH Groups at Plasma Oxidised Poly(propylene) by TFAA Chemical Derivatisation XPS: An Inter-laboratory Comparison , 2010 .

[20]  W. Viöl,et al.  Electron spectroscopy on plasma treated lignin and cellulose , 2010 .

[21]  P. Blanchet,et al.  Modification of Sugar Maple (Acer saccharum) and Black Spruce (Picea mariana) Wood Surfaces in a Dielectric Barrier Discharge (DBD) at Atmospheric Pressure , 2010 .

[22]  Per Stenius,et al.  Improvement of chitosan adsorption onto cellulosic fabrics by plasma treatment. , 2009, Biomacromolecules.

[23]  G. Avramidis,et al.  Sanding vs. plasma treatment of aged wood : A comparison with respect to surface energy , 2009 .

[24]  G. Thilagavathi,et al.  Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric , 2008 .

[25]  J. Ráheľ,et al.  Plasma Activation of Wood Surface by Diffuse Coplanar Surface Barrier Discharge , 2008 .

[26]  Roger M. Rowell,et al.  Handbook of wood chemistry and wood composites. , 2005 .

[27]  P. Gatenholm,et al.  Improvement of the wetting and absorption properties of lignocellulosic fibers by means of gas phase ozonation. , 2005, Langmuir.

[28]  W. Viöl,et al.  Dielectric barrier discharge treatments at atmospheric pressure for wood surface modification , 2003, Holz als Roh- und Werkstoff.

[29]  Pavel Vojtek,et al.  Atmospheric-pressure diffuse coplanar surface discharge for surface treatments , 2002 .

[30]  J. Grdadolnik Atr-ftir spectroscopy: Its advantages and limitations , 2002 .

[31]  R. A. Young,et al.  Mechanisms of oxygen- and argon-RF-plasma-induced surface chemistry of cellulose , 1997 .

[32]  M. Kushner,et al.  Microstreamer dynamics during plasma remediation of NO using atmospheric pressure dielectric barrier discharges , 1996 .

[33]  A. Gandini,et al.  Surface characterization of cellulose fibres by XPS and inverse gas chromatography , 1995 .

[34]  R. C. King,et al.  Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data , 1995 .

[35]  B. Eliasson,et al.  Modelling of dielectric barrier discharge chemistry , 1994 .

[36]  J. Mathieu,et al.  Analysis of cellulose and kraft pulp ozonolysis products by anion-exchange chromatography with pulsed amperometric detection , 1993 .

[37]  Buddy D. Ratner,et al.  Plasma-deposited polymeric films prepared from carbonyl-containing volatile precursors: XPS chemical derivatization and static SIMS surface characterization , 1991 .