Ligand and Decoy Sets for Docking to G Protein-Coupled Receptors

We compiled a G protein-coupled receptor (GPCR) ligand library (GLL) for 147 targets, selecting for each ligand 39 decoy molecules, collected in the GPCR Decoy Database (GDD). Decoys were chosen ensuring a ligand-decoy similarity of six physical properties, while enforcing ligand-decoy chemical dissimilarity. The performance in docking of the GDD was evaluated on 19 GPCRs, showing a marked decrease in enrichment compared to bias-uncorrected decoy sets. Both the GLL and GDD are freely available for the scientific community.

[1]  Alexander Pautsch,et al.  The Implication of the First Agonist Bound Activated GPCR X-ray Structure on GPCR in Silico Modeling. , 2011, ACS medicinal chemistry letters.

[2]  Santiago Vilar,et al.  Ligand and structure‐based models for the prediction of ligand‐receptor affinities and virtual screenings: Development and application to the β2‐adrenergic receptor , 2009, J. Comput. Chem..

[3]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[4]  Ruben Abagyan,et al.  Structure of the human histamine H1 receptor complex with doxepin , 2011, Nature.

[5]  Paul Watson,et al.  Virtual Screening Using Protein-Ligand Docking: Avoiding Artificial Enrichment , 2004, J. Chem. Inf. Model..

[6]  Ian T. Crosby,et al.  Homology Modeling and Docking Evaluation of Aminergic G Protein-Coupled Receptors , 2010, J. Chem. Inf. Model..

[7]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[8]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[9]  R. Stevens,et al.  The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist , 2008, Science.

[10]  Izhar Wallach,et al.  Virtual Decoy Sets for Molecular Docking Benchmarks , 2011, J. Chem. Inf. Model..

[11]  Claudio N. Cavasotto,et al.  Homology modeling in drug discovery: current trends and applications. , 2009, Drug discovery today.

[12]  Christopher G. Tate,et al.  The structural basis for agonist and partial agonist action on a β1-adrenergic receptor , 2010, Nature.

[13]  Satoshi Niijima,et al.  GLIDA: GPCR—ligand database for chemical genomics drug discovery—database and tools update , 2007, Nucleic Acids Res..

[14]  Claudio N. Cavasotto,et al.  Ligand-Steered Modeling and Docking: A Benchmarking Study in Class A G-Protein-Coupled Receptors , 2010, J. Chem. Inf. Model..

[15]  R. Abagyan,et al.  Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. , 2010, Journal of the American Chemical Society.

[16]  Jonathan A. Javitch,et al.  Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist , 2010, Science.

[17]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings , 1997 .

[18]  Claudio N. Cavasotto,et al.  Docking-based virtual screening for ligands of G protein-coupled receptors: not only crystal structures but also in silico models. , 2011, Journal of molecular graphics & modelling.

[19]  Claudio N Cavasotto,et al.  Homology models in docking and high-throughput docking. , 2011, Current topics in medicinal chemistry.

[20]  Matthew P. Repasky,et al.  Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. , 2004, Journal of medicinal chemistry.

[21]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[22]  Claudio N. Cavasotto,et al.  Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. , 2008, Journal of medicinal chemistry.

[23]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[24]  A. Leslie,et al.  Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation , 2011, Nature.

[25]  R. Stevens,et al.  Structure of an Agonist-Bound Human A2A Adenosine Receptor , 2011, Science.

[26]  Maria A Miteva,et al.  Structure-based virtual ligand screening: recent success stories. , 2009, Combinatorial chemistry & high throughput screening.

[27]  Brian K. Shoichet,et al.  Rapid Context-Dependent Ligand Desolvation in Molecular Docking , 2010, J. Chem. Inf. Model..

[28]  Helgi B. Schiöth,et al.  Structural diversity of G protein-coupled receptors and significance for drug discovery , 2008, Nature Reviews Drug Discovery.

[29]  D. Rognan,et al.  Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. , 2000, Journal of medicinal chemistry.

[30]  S. Moro,et al.  Ligand-based homology modeling as attractive tool to inspect GPCR structural plasticity. , 2006, Current pharmaceutical design.

[31]  J. Irwin,et al.  Benchmarking sets for molecular docking. , 2006, Journal of medicinal chemistry.

[32]  Brian K. Shoichet,et al.  ZINC - A Free Database of Commercially Available Compounds for Virtual Screening , 2005, J. Chem. Inf. Model..

[33]  Gebhard F. X. Schertler,et al.  Two distinct conformations of helix 6 observed in antagonist-bound structures of a β1-adrenergic receptor , 2011, Proceedings of the National Academy of Sciences.

[34]  John J. Irwin,et al.  Community benchmarks for virtual screening , 2008, J. Comput. Aided Mol. Des..

[35]  Avner Schlessinger,et al.  Ligand Discovery from a Dopamine D3 Receptor Homology Model and Crystal Structure , 2011, Nature chemical biology.

[36]  Jonathan S. Mason,et al.  Progress in Structure Based Drug Design for G Protein-Coupled Receptors , 2011, Journal of medicinal chemistry.