A Rao-Blackwellized particle filter for topological mapping

We present a particle filtering algorithm to construct topological maps of an uninstrument environment. The algorithm presented here constructs the posterior on the space of all possible topologies given measurements, and is based on our previous work on a Bayesian inference framework for topological maps (A. Ranganathan and F. Dellaert, 2004). Constructing the posterior solves the perceptual aliasing problem in a general, robust manner. The use of a Rao-Blackwellized particle filter (RBPF) for this purpose makes the inference in the space of topologies incremental and run in real-time. The RBPF maintains the joint posterior on topological maps and locations of landmarks. We demonstrate that, using the landmark locations thus obtained, the global metric map can be obtained from the topological map generated by our algorithm through a simple post-processing step. A data-driven proposal is provided to overcome the degeneracy problem inherent in particle filters. The use of a Dirichlet process prior on landmark labels is also a novel aspect of this work. We use laser range scan and odometry measurements to present experimental results on a robot

[1]  Gregory Dudek,et al.  Robust place recognition using local appearance based methods , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  Wolfram Burgard,et al.  Integrating Topological and Metric Maps for Mobile Robot Navigation: A Statistical Approach , 1998, AAAI/IAAI.

[3]  Benjamin Kuipers,et al.  Using the topological skeleton for scalable global metrical map-building , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[4]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[5]  Frank Dellaert,et al.  Inference in the space of topological maps: an MCMC-based approach , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[6]  Benjamin Kuipers,et al.  Towards a general theory of topological maps , 2004, Artif. Intell..

[7]  Benjamin Kuipers,et al.  Loop-closing and planarity in topological map-building , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[8]  T. C. Hu,et al.  Combinatorial algorithms , 1982 .

[9]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[10]  Ricardo Gutierrez-Osuna,et al.  LOLA Probabilistic Navigation for Topological Maps , 1996, AI Mag..

[11]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[12]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[13]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[14]  Kokichi Sughiara Some location problems for robot navigation using a single camera , 1988 .

[15]  David J. Austin,et al.  Hybrid topological/metric approach to SLAM , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[16]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[17]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[18]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[19]  Benjamin Kuipers,et al.  Bootstrap learning for place recognition , 2002, AAAI/IAAI.

[20]  Frank Dellaert,et al.  Data driven MCMC for Appearance-based Topological Mapping , 2005, Robotics: Science and Systems.

[21]  Roland Siegwart,et al.  Simultaneous localization and map building: a global topological model with local metric maps , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[22]  Roland Siegwart,et al.  Hybrid simultaneous localization and map building: closing the loop with multi-hypotheses tracking , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[23]  Kokichi Sugihara,et al.  Some location problems for robot navigation using a single camera , 1988, Comput. Vis. Graph. Image Process..

[24]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[25]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[26]  Stephen R. Marsland,et al.  Learning to select distinctive landmarks for mobile robot navigation , 2001, Robotics Auton. Syst..

[27]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[28]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[29]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[30]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[31]  Leslie Pack Kaelbling,et al.  Learning Topological Maps with Weak Local Odometric Information , 1997, IJCAI.