On the Spatial Resolution of Homogeneous Isotropic Filters on the Sphere
暂无分享,去创建一个
[1] F. Harris. On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.
[2] Willi Freeden,et al. Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup , 2008, Geosystems Mathematics.
[3] J. Huba,et al. Simulation of the seeding of equatorial spread F by circular gravity waves , 2013 .
[4] C. Jekeli. Alternative methods to smooth the Earth's gravity field , 1981 .
[5] René Laprise,et al. The resolution of global spectral models , 1992 .
[6] B. Scanlon,et al. GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA , 2010 .
[7] C. Förste,et al. The new ESA satellite‐only gravity field model via the direct approach , 2013 .
[8] M. Watkins,et al. The gravity recovery and climate experiment: Mission overview and early results , 2004 .
[9] Prashant D. Sardeshmukh,et al. Spatial Smoothing on the Sphere , 1984 .
[10] T. M. Lillesand,et al. Remote Sensing and Image Interpretation , 1980 .
[11] S. Swenson,et al. Post‐processing removal of correlated errors in GRACE data , 2006 .
[12] Jürgen Kusche,et al. Evaluation of GRACE filter tools from a hydrological perspective , 2009 .
[13] J. Kusche. Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models , 2007 .
[14] R. Rummel,et al. GOCE gravitational gradiometry , 2011 .